Nous construisons une diffusion naturelle associée ê la géométrie aléatoire de la gravité quantique de Liouville. Formellement, il s’agît d’un mouvement Brownien dans un domaine du plan complexe, muni d’un tenseur de Riemann donné par , correctement renomalisé. Ici est une réalisation du champ libre Gaussien sur , et est un paramètre. Il est montré que ce processus est presque sûrement continu et possède certains propriétés d’invariance conforme. Une borne sur la dimension de Hausdorff des instants passés dans les points épais du champ libre Gaussien est obtenue, qui montre que cette diffusion passe Lebesue-presque tout son temps dans les points -épais, presque sûrement. Des résultats semblables mais plus profonds ont été indépendemment et simultanément obtenus par Garban, Rhodes et Vargas.
We construct the natural diffusion in the random geometry of planar Liouville quantum gravity. Formally, this is the Brownian motion in a domain of the complex plane for which the Riemannian metric tensor at a point is given by , appropriately normalised. Here is an instance of the Gaussian free field on and is a parameter. We show that the process is almost surely continuous and enjoys certain conformal invariance properties. We also estimate the Hausdorff dimension of times that the diffusion spends in the thick points of the Gaussian free field, and show that it spends Lebesgue-almost all its time in the set of -thick points, almost surely. Similar but deeper results have been independently and simultaneously proved by Garban, Rhodes and Vargas.
@article{AIHPB_2015__51_3_947_0, author = {Berestycki, Nathana\"el}, title = {Diffusion in planar {Liouville} quantum gravity}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {947--964}, publisher = {Gauthier-Villars}, volume = {51}, number = {3}, year = {2015}, doi = {10.1214/14-AIHP605}, mrnumber = {3365969}, zbl = {1325.60125}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/14-AIHP605/} }
TY - JOUR AU - Berestycki, Nathanaël TI - Diffusion in planar Liouville quantum gravity JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 947 EP - 964 VL - 51 IS - 3 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/14-AIHP605/ DO - 10.1214/14-AIHP605 LA - en ID - AIHPB_2015__51_3_947_0 ER -
%0 Journal Article %A Berestycki, Nathanaël %T Diffusion in planar Liouville quantum gravity %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 947-964 %V 51 %N 3 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/14-AIHP605/ %R 10.1214/14-AIHP605 %G en %F AIHPB_2015__51_3_947_0
Berestycki, Nathanaël. Diffusion in planar Liouville quantum gravity. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 947-964. doi : 10.1214/14-AIHP605. http://archive.numdam.org/articles/10.1214/14-AIHP605/
[1] Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 (3) (2003) 449–475. | MR | Zbl
and .[2] KPZ in one dimensional random geometry of multiplicative cascades. Comm. Math. Phys. 289 (2) (2009) 653–662. | MR | Zbl
and .[3] Thick points for planar Brownian motion and the Erdős–Taylor conjecture on random walk. Acta Math. 186 (2) (2001) 239–270. | MR | Zbl
, , and .[4] Liouville quantum gravity and KPZ. Invent. Math. 185 (2) (2011) 333–393. | MR | Zbl
and .[5] Quantum gravity and the KPZ formula. Bourbaki seminar, 1052, March 2012. | Numdam | MR
.[6] Liouville Brownian motion. Available at arXiv. | DOI | MR | Zbl
, and .[7] Thick points of the Gaussian free field. Ann. Probab. 38 (2010) 896–926. | MR | Zbl
, and .[8] Une inégalité du type Slepian et Gordon sur les processus Gaussiens. Israel J. Math. 55 (1) (1986) 109–110. | MR | Zbl
.[9] Brownian Motion. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press, Cambridge, 2010. | MR | Zbl
and .[10] Sufficient conditions for the characteristic function of a two-dimensional isotropic distribution. (English. Ukrainian original) Theory Probab. Math. Statist. 53 (1996) 149–152. Translation from Teor. Jmovirn. Mat. Stat. 53 (1995) 138–141. | MR | Zbl
.[11] Gaussian multiplicative chaos revisited. Ann. Probab. 38 (2010) 605–631. | DOI | MR | Zbl
and .[12] KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15 (2011) 358–371. | DOI | Numdam | MR | Zbl
and .[13] Gaussian free fields for mathematicians. Probab. Theory Related Fields 139 (1989) 521–541. | DOI | MR | Zbl
.Cité par Sources :