Diffusion in planar Liouville quantum gravity
Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 947-964.

Nous construisons une diffusion naturelle associée ê la géométrie aléatoire de la gravité quantique de Liouville. Formellement, il s’agît d’un mouvement Brownien dans un domaine D du plan complexe, muni d’un tenseur de Riemann donné par exp(γh(z)), correctement renomalisé. Ici h est une réalisation du champ libre Gaussien sur D, et γ]0,2[ est un paramètre. Il est montré que ce processus est presque sûrement continu et possède certains propriétés d’invariance conforme. Une borne sur la dimension de Hausdorff des instants passés dans les points épais du champ libre Gaussien est obtenue, qui montre que cette diffusion passe Lebesue-presque tout son temps dans les points γ-épais, presque sûrement. Des résultats semblables mais plus profonds ont été indépendemment et simultanément obtenus par Garban, Rhodes et Vargas.

We construct the natural diffusion in the random geometry of planar Liouville quantum gravity. Formally, this is the Brownian motion in a domain D of the complex plane for which the Riemannian metric tensor at a point zD is given by exp(γh(z)), appropriately normalised. Here h is an instance of the Gaussian free field on D and γ(0,2) is a parameter. We show that the process is almost surely continuous and enjoys certain conformal invariance properties. We also estimate the Hausdorff dimension of times that the diffusion spends in the thick points of the Gaussian free field, and show that it spends Lebesgue-almost all its time in the set of γ-thick points, almost surely. Similar but deeper results have been independently and simultaneously proved by Garban, Rhodes and Vargas.

DOI : 10.1214/14-AIHP605
Mots-clés : brownian motion, gaussian free field, Liouville quantum gravity, thick points
@article{AIHPB_2015__51_3_947_0,
     author = {Berestycki, Nathana\"el},
     title = {Diffusion in planar {Liouville} quantum gravity},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {947--964},
     publisher = {Gauthier-Villars},
     volume = {51},
     number = {3},
     year = {2015},
     doi = {10.1214/14-AIHP605},
     mrnumber = {3365969},
     zbl = {1325.60125},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/14-AIHP605/}
}
TY  - JOUR
AU  - Berestycki, Nathanaël
TI  - Diffusion in planar Liouville quantum gravity
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2015
SP  - 947
EP  - 964
VL  - 51
IS  - 3
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/articles/10.1214/14-AIHP605/
DO  - 10.1214/14-AIHP605
LA  - en
ID  - AIHPB_2015__51_3_947_0
ER  - 
%0 Journal Article
%A Berestycki, Nathanaël
%T Diffusion in planar Liouville quantum gravity
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2015
%P 947-964
%V 51
%N 3
%I Gauthier-Villars
%U http://archive.numdam.org/articles/10.1214/14-AIHP605/
%R 10.1214/14-AIHP605
%G en
%F AIHPB_2015__51_3_947_0
Berestycki, Nathanaël. Diffusion in planar Liouville quantum gravity. Annales de l'I.H.P. Probabilités et statistiques, Tome 51 (2015) no. 3, pp. 947-964. doi : 10.1214/14-AIHP605. http://archive.numdam.org/articles/10.1214/14-AIHP605/

[1] E. Bacry and J. F. Muzy. Log-infinitely divisible multifractal processes. Comm. Math. Phys. 236 (3) (2003) 449–475. | MR | Zbl

[2] I. Benjamini and O. Schramm. KPZ in one dimensional random geometry of multiplicative cascades. Comm. Math. Phys. 289 (2) (2009) 653–662. | MR | Zbl

[3] A. Dembo, Y. Peres, J. Rosen and O. Zeitouni. Thick points for planar Brownian motion and the Erdős–Taylor conjecture on random walk. Acta Math. 186 (2) (2001) 239–270. | MR | Zbl

[4] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Invent. Math. 185 (2) (2011) 333–393. | MR | Zbl

[5] C. Garban. Quantum gravity and the KPZ formula. Bourbaki seminar, 1052, March 2012. | Numdam | MR

[6] C. Garban, R. Rhodes and V. Vargas. Liouville Brownian motion. Available at arXiv. | DOI | MR | Zbl

[7] X. Hu, J. Miller and Y. Peres. Thick points of the Gaussian free field. Ann. Probab. 38 (2010) 896–926. | MR | Zbl

[8] J.-P. Kahane. Une inégalité du type Slepian et Gordon sur les processus Gaussiens. Israel J. Math. 55 (1) (1986) 109–110. | MR | Zbl

[9] P. Mörters and Y. Peres. Brownian Motion. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge Univ. Press, Cambridge, 2010. | MR | Zbl

[10] O. Y. Pasnechenko. Sufficient conditions for the characteristic function of a two-dimensional isotropic distribution. (English. Ukrainian original) Theory Probab. Math. Statist. 53 (1996) 149–152. Translation from Teor. Jmovirn. Mat. Stat. 53 (1995) 138–141. | MR | Zbl

[11] R. Robert and V. Vargas. Gaussian multiplicative chaos revisited. Ann. Probab. 38 (2010) 605–631. | DOI | MR | Zbl

[12] R. Rhodes and V. Vargas. KPZ formula for log-infinitely divisible multifractal random measures. ESAIM Probab. Stat. 15 (2011) 358–371. | DOI | Numdam | MR | Zbl

[13] S. Sheffield. Gaussian free fields for mathematicians. Probab. Theory Related Fields 139 (1989) 521–541. | DOI | MR | Zbl

Cité par Sources :