We study a BGK-like approximation to hyperbolic conservation laws forced by a multiplicative noise. First, we make use of the stochastic characteristics method and establish the existence of a solution for any fixed parameter . In the next step, we investigate the limit as tends to and show the convergence to the kinetic solution of the limit problem.
Dans ce papier, nous étudions une approximation de type BGK pour des lois de conservations hyperboliques soumises à un bruit multiplicatif. Dans un premier temps, nous utilisons la méthode des caractéristiques dans le cadre stochastique et établissons l’existence d’une solution pour tout paramètre fixé. Nous nous intéressons ensuite à la limite quand tend vers et prouvons la convergence vers la solution cinétique du problème limite.
@article{AIHPB_2015__51_4_1500_0, author = {Hofmanov\'a, Martina}, title = {A {Bhatnagar{\textendash}Gross{\textendash}Krook} approximation to stochastic scalar conservation laws}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1500--1528}, publisher = {Gauthier-Villars}, volume = {51}, number = {4}, year = {2015}, doi = {10.1214/14-AIHP610}, mrnumber = {3414456}, zbl = {1329.60214}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/14-AIHP610/} }
TY - JOUR AU - Hofmanová, Martina TI - A Bhatnagar–Gross–Krook approximation to stochastic scalar conservation laws JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1500 EP - 1528 VL - 51 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/14-AIHP610/ DO - 10.1214/14-AIHP610 LA - en ID - AIHPB_2015__51_4_1500_0 ER -
%0 Journal Article %A Hofmanová, Martina %T A Bhatnagar–Gross–Krook approximation to stochastic scalar conservation laws %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 1500-1528 %V 51 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/14-AIHP610/ %R 10.1214/14-AIHP610 %G en %F AIHPB_2015__51_4_1500_0
Hofmanová, Martina. A Bhatnagar–Gross–Krook approximation to stochastic scalar conservation laws. Annales de l'I.H.P. Probabilités et statistiques, Volume 51 (2015) no. 4, pp. 1500-1528. doi : 10.1214/14-AIHP610. http://archive.numdam.org/articles/10.1214/14-AIHP610/
[1] A BGK approximation to scalar conservation laws with discontinuous flux. Proc. Roy. Soc. Edinburgh Sect. A 140 (2010) 953–972. | DOI | MR | Zbl
and .[2] The Cauchy problem for conservation laws with a multiplicative noise. J. Hyperbolic Differ. Equ. 9 (4) (2012) 661–709. | MR | Zbl
, and .[3] On nonlinear stochastic balance laws. Arch. Ration. Mech. Anal. 204 (2012) 707–743. | DOI | MR | Zbl
, and .[4] Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (4) (2003) 645–668. | Numdam | MR | Zbl
and .[5] Stochastic Equations in Infinite Dimensions. Encyclopedia Math. Appl. 44. Cambridge Univ. Press, Cambridge, 1992. | DOI | MR | Zbl
and .[6] Scalar conservation laws with stochastic forcing. J. Funct. Anal. 259 (2010) 1014–1042. | DOI | MR | Zbl
and .[7] Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. | DOI | MR | Zbl
and .[8] Stochastic scalar conservation laws. J. Funct. Anal. 255 (2) (2008) 313–373. | MR | Zbl
and .[9] Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 180 (2010) 1–53. | DOI | MR | Zbl
, and .[10] Degenerate parabolic stochastic partial differential equations. Stochastic Process. Appl. 123 (2013) 4294–4336. | DOI | MR | Zbl
.[11] Conservation laws with a random source. Appl. Math. Optim. 36 (2) (1997) 229–241. | MR | Zbl
and .[12] A kinetic formulation for multidimensional scalar conservation laws with boundary conditions and applications. SIAM J. Math. Anal. 36 (1) (2004) 214–232. | MR | Zbl
and .[13] On a stochastic scalar conservation law. Indiana Univ. Math. J. 52 (1) (2003) 227–256. | MR | Zbl
.[14] Stochastic differential equations and stochastic flows of diffeomorphisms. In École d’Été de Probabilités de Saint-Flour XII – 1982 143–303. Lecture Notes in Math. 1097. Springer, Berlin, 1984. | MR | Zbl
.[15] Stochastic Flows and Stochastic Differential Equations. Cambridge Univ. Press, Cambridge, 1990. | MR | Zbl
.[16] Formulation cinétique des lois de conservation scalaires multidimensionnelles. C. R. Acad. Sci. Paris Sér. I Math. 312 (1991) 97–102. | MR | Zbl
, and .[17] A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Amer. Math. Soc. 7 (1) (1994) 169–191. | MR | Zbl
, and .[18] Boundary conditions for scalar conservation laws from a kinetic point of view. J. Stat. Phys. 94 (5-6) (1999) 779–804. | MR | Zbl
, and .[19] Erratum to “Boundary conditions for scalar conservation laws from a kinetic point of view.” J. Stat. Phys. 115 (2004) 1755–1756. | DOI | MR | Zbl
, and .[20] A kinetic equation with kinetic entropy functions for scalar conservation laws. Comm. Math. Phys. 136 (3) (1991) 501–517. | MR | Zbl
and .[21] Kinetic Formulation of Conservation Laws. Oxford Lecture Ser. Math. Appl. 21. Oxford Univ. Press, Oxford, 2002. | MR | Zbl
.[22] Stochastic Integration and Differential Equations. Springer, Berlin, 2004. | MR | Zbl
.[23] Scalar conservation laws with fractional stochastic forcing: Existence, uniqueness and invariant measure. Stochastic Process. Appl. 122 (2012) 1456–1486. | DOI | MR | Zbl
and .[24] On a stochastic first order hyperbolic equation in a bounded domain. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 12 (4) (2009) 613–651. | MR | Zbl
and .[25] Invariant measures for Burgers equation with stochastic forcing. Ann. of Math. (2) 151 (2000) 877–960. | MR | Zbl
, , and .Cited by Sources: