We consider critical branching Brownian motion with absorption, in which there is initially a single particle at , particles move according to independent one-dimensional Brownian motions with the critical drift of , and particles are absorbed when they reach zero. Here we obtain asymptotic results concerning the behavior of the process before the extinction time, as the position of the initial particle tends to infinity. We estimate the number of particles in the system at a given time and the position of the right-most particle. We also obtain asymptotic results for the configuration of particles at a typical time.
Nous considérons un mouvement brownien branchant avec absorption critique, issu d’une particule en , dans lequel les particules se déplacent selon des mouvement browniens réels indépendants avec une dérive critique de , et sont absorbées en zero. Nous obtenons des résultats asymptotiques sur le comportement de ce processus avant son extinction, quand la position de la particule initiale tend vers l’infini. En particulier nous obtenons des éstimées sur le nombre de particules dans le système, la position de la particule la plus à droite, et la configuration des particules à un instant typique.
@article{AIHPB_2015__51_4_1215_0, author = {Berestycki, Julien and Berestycki, Nathana\"el and Schweinsberg, Jason}, title = {Critical branching brownian motion with absorption: {Particle} configurations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1215--1250}, publisher = {Gauthier-Villars}, volume = {51}, number = {4}, year = {2015}, doi = {10.1214/14-AIHP613}, mrnumber = {3414446}, zbl = {1329.60300}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/14-AIHP613/} }
TY - JOUR AU - Berestycki, Julien AU - Berestycki, Nathanaël AU - Schweinsberg, Jason TI - Critical branching brownian motion with absorption: Particle configurations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1215 EP - 1250 VL - 51 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/14-AIHP613/ DO - 10.1214/14-AIHP613 LA - en ID - AIHPB_2015__51_4_1215_0 ER -
%0 Journal Article %A Berestycki, Julien %A Berestycki, Nathanaël %A Schweinsberg, Jason %T Critical branching brownian motion with absorption: Particle configurations %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 1215-1250 %V 51 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/14-AIHP613/ %R 10.1214/14-AIHP613 %G en %F AIHPB_2015__51_4_1215_0
Berestycki, Julien; Berestycki, Nathanaël; Schweinsberg, Jason. Critical branching brownian motion with absorption: Particle configurations. Annales de l'I.H.P. Probabilités et statistiques, Volume 51 (2015) no. 4, pp. 1215-1250. doi : 10.1214/14-AIHP613. http://archive.numdam.org/articles/10.1214/14-AIHP613/
[1] Branching Brownian motion seen from its tip. Probab. Theory Related Fields 157 (2013) 405–451. | DOI | MR | Zbl
, , and .[2] The extremal process of branching Brownian motion. Probab. Theory Related Fields 157 (2013) 535–574. | DOI | MR | Zbl
, and .[3] Quasi-stationary distributions and Fleming–Viot processes in finite spaces. J. Appl. Probab. 48 (2011) 322–332. | DOI | MR | Zbl
, and .[4] Fleming–Viot selects the minimal quasi-stationary distribution: The Galton–Watson case. Ann. Inst. Henri Poincaré. To appear, 2015. Available at arXiv:1206.6114. | MR | Zbl
, , and .[5] The genealogy of branching Brownian motion with absorption. Ann. Probab. 41 (2013) 527–618. | DOI | MR | Zbl
, and .[6] Critical branching Brownian motion with absorption: Survival probability. Probab. Theory Related Fields 160 (2014) 489–520. | DOI | MR | Zbl
, and .[7] Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 (285) (1983) iv+190. | DOI | MR | Zbl
.[8] Noisy traveling waves: Effect of selection on genealogies. Europhys. Lett. 76 (2006) 1–7. | DOI | MR
, , and .[9] Effect of selection on ancestry: An exactly soluble case and its phenomenological generalization. Phys. Rev. E (3) 76 (2007) 041104. | MR
, , and .[10] Configurational transition in a Fleming–Viot-type model and probabilistic interpretation of Laplacian eigenfunctions. J. Phys. A: Math. Gen. 29 (1996) 2633–2642. | Zbl
, , and .[11] A Fleming–Viot particle representation of the Dirichlet Laplacian. Comm. Math. Phys. 214 (2000) 679–703. | DOI | MR | Zbl
, and .[12] Hydrodynamic limit for a Fleming–Viot type system. Stochastic Process. Appl. 110 (2004) 111–143. | DOI | MR | Zbl
and .[13] Immortal particle for a catalytic branching process. Probab. Theory Related Fields 153 (2011) 333–361. | DOI | MR | Zbl
and .[14] A short proof of the logarithmic Bramson correction in Fisher–KPP equations. Netw. Heterog. Media 8 (2013) 275–289. | DOI | MR | Zbl
, , and .[15] The logarithmic delay of KPP fronts in a periodic medium. Preprint, arXiv:1211.6173. | DOI | MR | Zbl
, , and .[16] Survival probabilities for branching Brownian motion with absorption. Electron. Commun. Probab. 12 (2007) 81–92. | DOI | MR | Zbl
and .[17] Further probabilistic analysis of the Fisher–Kolmogorov–Petrovskii–Piscounov equation: One-sided traveling waves. Ann. Inst. Henri Poincaré Probab. Stat. 42 (2006) 125–145. | DOI | Numdam | MR | Zbl
, and .[18] The unscaled paths of branching Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012) 579–608. | DOI | Numdam | MR | Zbl
and .[19] Foundations of Modern Probability, 2nd edition. Springer, New York, 2002. | DOI | MR | Zbl
.[20] Branching Brownian motion with absorption. Stochastic Process. Appl. 7 (1978) 9–47. | DOI | MR | Zbl
.[21] On the maximal displacement of a critical branching random walk. Probab. Theory Related Fields 162 (2015) 71–96. | DOI | MR | Zbl
and .[22] Speed and fluctuations of -particle branching Brownian motion with spatial selection. Preprint, arXiv:1304.0562. | DOI | MR | Zbl
.[23] Multiplicative martingales for spatial branching processes. In Seminar on Stochastic Processes, 1987 223–241. E. Çinlar, K. L. Chung and R. K. Getoor (Eds). Prog. Probab. Statist. 15. Birkhäuser, Boston, 1988. | MR | Zbl
.[24] Branching diffusion processes in population genetics. Adv. in Appl. Probab. 8 (1976) 659–689. | DOI | MR | Zbl
.[25] Quasi-stationary distributions for a Brownian motion with drift and associated limit laws. J. Appl. Probab. 31 (4) (1994) 911–920. | MR | Zbl
and .[26] Certain limit theorems of the theory of branching random processes. Doklady Akad. Nauk SSSR (N.S.) 56 (1947) 795–798. | MR | Zbl
.Cited by Sources: