An exact asymptotic for the square variation of partial sum processes
Annales de l'I.H.P. Probabilités et statistiques, Volume 51 (2015) no. 4, pp. 1597-1619.

We establish an exact asymptotic formula for the square variation of certain partial sum processes. Let {X i } be a sequence of independent, identically distributed mean zero random variables with finite variance σ 2 and satisfying a moment condition 𝔼[|X i | 2+δ ]< for some δ>0. If we let 𝒫 N denote the set of all possible partitions of the interval [N] into subintervals, then we have that max π𝒫 N Iπ | iI X i | 2 2σ 2 Nlnln(N) holds almost surely. This can be viewed as a variational strengthening of the law of the iterated logarithm and refines results of J. Qian on partial sum and empirical processes. When δ=0, we obtain a weaker ‘in probability’ version of the result.

Nous établissons une formule asymptotique exacte pour la variation quadratique de certains processus de sommes partielles. Soit {X i } une suite de variables indépendantes et identiquement distribuées de moyenne nulle et de variance finie σ 2 satisfaisant une condition de moments 𝔼[|X i | 2+δ ]< pour un δ>0. Soit 𝒫 N l’ensemble de toutes les partitions possibles de l’intervalle [N] en sous-intervalles, alors nous montrons que presque sûrement max π𝒫 N Iπ | iI X i | 2 2σ 2 Nlnln(N). Ceci peut être interprété comme une amélioration de la loi du logarithme itéré et précise les résultats de J. Qian sur les sommes partielles et les processus empiriques. Quand δ=0, nous obtenons une version plus faible, en probabilité, de ce résultat.

DOI: 10.1214/14-AIHP617
Keywords: square variation, law of the iterated logarithm, random walks
@article{AIHPB_2015__51_4_1597_0,
     author = {Lewko, Allison and Lewko, Mark},
     title = {An exact asymptotic for the square variation of partial sum processes},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {1597--1619},
     publisher = {Gauthier-Villars},
     volume = {51},
     number = {4},
     year = {2015},
     doi = {10.1214/14-AIHP617},
     mrnumber = {3414459},
     zbl = {1329.60066},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1214/14-AIHP617/}
}
TY  - JOUR
AU  - Lewko, Allison
AU  - Lewko, Mark
TI  - An exact asymptotic for the square variation of partial sum processes
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2015
SP  - 1597
EP  - 1619
VL  - 51
IS  - 4
PB  - Gauthier-Villars
UR  - http://archive.numdam.org/articles/10.1214/14-AIHP617/
DO  - 10.1214/14-AIHP617
LA  - en
ID  - AIHPB_2015__51_4_1597_0
ER  - 
%0 Journal Article
%A Lewko, Allison
%A Lewko, Mark
%T An exact asymptotic for the square variation of partial sum processes
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2015
%P 1597-1619
%V 51
%N 4
%I Gauthier-Villars
%U http://archive.numdam.org/articles/10.1214/14-AIHP617/
%R 10.1214/14-AIHP617
%G en
%F AIHPB_2015__51_4_1597_0
Lewko, Allison; Lewko, Mark. An exact asymptotic for the square variation of partial sum processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 51 (2015) no. 4, pp. 1597-1619. doi : 10.1214/14-AIHP617. http://archive.numdam.org/articles/10.1214/14-AIHP617/

[1] J. Bretagnolle. p-variation de fonctions aléatoires. II. Processus à accroissements indépendants. In Séminaire de Probabilités VI (Univ. Strasbourg, Année Universitaire 1970–1971). Lecture Notes in Math. 258 64–71. Springer, Berlin, 1972. | Numdam | MR | SPS | Zbl

[2] Y. S. Chow and H. Teicher. Probability Theory: Independence, Interchangeability, Martingales, 3rd edition. Springer, Berlin, 1997. | MR | Zbl

[3] J. L. Doob. Stochastic Processes. Wiley, New York, 1953. | MR | Zbl

[4] R. M. Dudley. Empirical processes and p-variation. In Festschrift for Lucien Le Cam 219–233. Springer, Berlin, 1997. | MR | Zbl

[5] N. Etemadi. On some classical results in probability theory. Sankhyā Ser. A 47 (1985) 215–221. | MR | Zbl

[6] J. Galambos. Advanced Probability Theory, 2nd edition. Dekker, New York, 1995. | MR | Zbl

[7] P. Hartman and A. Wintner. On the law of the iterated logarithm. Amer. J. Math. 63 (1941) 169–176. | DOI | JFM | MR

[8] W. Hoeffding. Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (301) (1963) 13–30. | MR | Zbl

[9] R. Jones and G. Wang. Variation inequalities for the Fejér and Poisson kernels. Trans. Amer. Math. Soc. 356 (11) (2004) 4493–4518. | MR | Zbl

[10] A. Lewko and M. Lewko. Estimates for the square variation of partial sums of Fourier series and their rearrangements. J. Funct. Anal. 262 (6) (2012) 2561–2607. | MR | Zbl

[11] A. Lewko and M. Lewko. Orthonormal systems in linear spans. Anal. PDE 7 (2014) 97–115. | DOI | MR | Zbl

[12] A. Lewko and M. Lewko. A variational Barban–Davenport–Halberstam theorem. J. Number Theory 132 (9) (2012) 2020–2045. | MR | Zbl

[13] A. Lewko and M. Lewko. The square variation of rearranged Fourier series. Amer. J. Math. To appear, 2015. Available at arXiv:1212.1988. | DOI | MR | Zbl

[14] J. Qian. The p-variation of partial sum processes and the empirical process. Ann. Probab. 26 (3) (1998) 1370–1383. | MR | Zbl

[15] E. Rio. Théorie asymptotique des processus aléatoires faiblement dépendants. Mathématiques and Applications 31. Springer, Berlin, 1999. | MR | Zbl

[16] H. P. Rosenthal. On the subspaces of L p (p>2) spanned by sequences of independent random variables. Israel J. Math. 8 (1970) 273–303. | DOI | MR | Zbl

[17] S. J. Taylor. Exact asymptotic estimates of Brownian path variation. Duke Math. J. 39 (1972) 219–241. | DOI | MR | Zbl

Cited by Sources: