We establish an exact asymptotic formula for the square variation of certain partial sum processes. Let be a sequence of independent, identically distributed mean zero random variables with finite variance and satisfying a moment condition for some . If we let denote the set of all possible partitions of the interval into subintervals, then we have that holds almost surely. This can be viewed as a variational strengthening of the law of the iterated logarithm and refines results of J. Qian on partial sum and empirical processes. When , we obtain a weaker ‘in probability’ version of the result.
Nous établissons une formule asymptotique exacte pour la variation quadratique de certains processus de sommes partielles. Soit une suite de variables indépendantes et identiquement distribuées de moyenne nulle et de variance finie satisfaisant une condition de moments pour un . Soit l’ensemble de toutes les partitions possibles de l’intervalle en sous-intervalles, alors nous montrons que presque sûrement . Ceci peut être interprété comme une amélioration de la loi du logarithme itéré et précise les résultats de J. Qian sur les sommes partielles et les processus empiriques. Quand , nous obtenons une version plus faible, en probabilité, de ce résultat.
@article{AIHPB_2015__51_4_1597_0, author = {Lewko, Allison and Lewko, Mark}, title = {An exact asymptotic for the square variation of partial sum processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1597--1619}, publisher = {Gauthier-Villars}, volume = {51}, number = {4}, year = {2015}, doi = {10.1214/14-AIHP617}, mrnumber = {3414459}, zbl = {1329.60066}, language = {en}, url = {http://archive.numdam.org/articles/10.1214/14-AIHP617/} }
TY - JOUR AU - Lewko, Allison AU - Lewko, Mark TI - An exact asymptotic for the square variation of partial sum processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2015 SP - 1597 EP - 1619 VL - 51 IS - 4 PB - Gauthier-Villars UR - http://archive.numdam.org/articles/10.1214/14-AIHP617/ DO - 10.1214/14-AIHP617 LA - en ID - AIHPB_2015__51_4_1597_0 ER -
%0 Journal Article %A Lewko, Allison %A Lewko, Mark %T An exact asymptotic for the square variation of partial sum processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2015 %P 1597-1619 %V 51 %N 4 %I Gauthier-Villars %U http://archive.numdam.org/articles/10.1214/14-AIHP617/ %R 10.1214/14-AIHP617 %G en %F AIHPB_2015__51_4_1597_0
Lewko, Allison; Lewko, Mark. An exact asymptotic for the square variation of partial sum processes. Annales de l'I.H.P. Probabilités et statistiques, Volume 51 (2015) no. 4, pp. 1597-1619. doi : 10.1214/14-AIHP617. http://archive.numdam.org/articles/10.1214/14-AIHP617/
[1] -variation de fonctions aléatoires. II. Processus à accroissements indépendants. In Séminaire de Probabilités VI (Univ. Strasbourg, Année Universitaire 1970–1971). Lecture Notes in Math. 258 64–71. Springer, Berlin, 1972. | Numdam | MR | SPS | Zbl
.[2] Probability Theory: Independence, Interchangeability, Martingales, 3rd edition. Springer, Berlin, 1997. | MR | Zbl
and .[3] Stochastic Processes. Wiley, New York, 1953. | MR | Zbl
.[4] Empirical processes and -variation. In Festschrift for Lucien Le Cam 219–233. Springer, Berlin, 1997. | MR | Zbl
.[5] On some classical results in probability theory. Sankhyā Ser. A 47 (1985) 215–221. | MR | Zbl
.[6] Advanced Probability Theory, 2nd edition. Dekker, New York, 1995. | MR | Zbl
.[7] On the law of the iterated logarithm. Amer. J. Math. 63 (1941) 169–176. | DOI | JFM | MR
and .[8] Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 (301) (1963) 13–30. | MR | Zbl
.[9] Variation inequalities for the Fejér and Poisson kernels. Trans. Amer. Math. Soc. 356 (11) (2004) 4493–4518. | MR | Zbl
and .[10] Estimates for the square variation of partial sums of Fourier series and their rearrangements. J. Funct. Anal. 262 (6) (2012) 2561–2607. | MR | Zbl
and .[11] Orthonormal systems in linear spans. Anal. PDE 7 (2014) 97–115. | DOI | MR | Zbl
and .[12] A variational Barban–Davenport–Halberstam theorem. J. Number Theory 132 (9) (2012) 2020–2045. | MR | Zbl
and .[13] The square variation of rearranged Fourier series. Amer. J. Math. To appear, 2015. Available at arXiv:1212.1988. | DOI | MR | Zbl
and .[14] The -variation of partial sum processes and the empirical process. Ann. Probab. 26 (3) (1998) 1370–1383. | MR | Zbl
.[15] Théorie asymptotique des processus aléatoires faiblement dépendants. Mathématiques and Applications 31. Springer, Berlin, 1999. | MR | Zbl
.[16] On the subspaces of () spanned by sequences of independent random variables. Israel J. Math. 8 (1970) 273–303. | DOI | MR | Zbl
.[17] Exact asymptotic estimates of Brownian path variation. Duke Math. J. 39 (1972) 219–241. | DOI | MR | Zbl
.Cited by Sources: