@article{ASENS_1981_4_14_4_433_0, author = {Koiso, Norihito}, title = {Hypersurfaces of {Einstein} manifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {433--443}, publisher = {Elsevier}, volume = {Ser. 4, 14}, number = {4}, year = {1981}, doi = {10.24033/asens.1413}, mrnumber = {84h:53061}, zbl = {0493.53041}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.1413/} }
TY - JOUR AU - Koiso, Norihito TI - Hypersurfaces of Einstein manifolds JO - Annales scientifiques de l'École Normale Supérieure PY - 1981 SP - 433 EP - 443 VL - 14 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.24033/asens.1413/ DO - 10.24033/asens.1413 LA - en ID - ASENS_1981_4_14_4_433_0 ER -
Koiso, Norihito. Hypersurfaces of Einstein manifolds. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 14 (1981) no. 4, pp. 433-443. doi : 10.24033/asens.1413. http://archive.numdam.org/articles/10.24033/asens.1413/
[1] Quelques formules de variation pour une structure riemannienne (Ann. scient. Éc. Norm. Sup., Vol. 3, 1970, pp. 285-294). | Numdam | MR | Zbl
,[2] Sur les géodésiques fermées des variétés quaternionniennes de dimension 4 (Math. Ann., Vol. 221, 1976, pp. 153-165). | MR | Zbl
,[3] The Splitting Theorem for Manifolds of Non-Negative Ricci Curvature (J. Diff. Geom., Vol. 6, 1971, pp. 119-128). | MR | Zbl
and ,[4] Extrinsic Spheres in Riemannian Manifolds (Houston J. of Math., Vol. 5, 1979, pp. 319-324). | MR | Zbl
,[5] Totally Geodesic Submanifolds of Symmetric spaces II (Duke Math. J., Vol. 45, 1978, pp. 405-425). | MR | Zbl
and ,[6] Some Regularity Theorems in Riemannian Geometry (Ann. scient. Éc. Norm. Sup., Vol. 14, 1981, pp. 249-260). | Numdam | MR | Zbl
and ,[7] Geometric Measure Theory, Springer-Verlag, 1969, Berlin. | MR | Zbl
,[8] Differential Topology, Springer-Verlag, New York, 1976. | MR | Zbl
,[9] Minimal Varieties in Real and Complex Geometry, Les Presses de l'Université de Montréal, 1974, Montréal, Canada. | Zbl
,[10] Isotropic Submanifolds with Parallel Second Fundamental forms in Symmetric Spaces (Osaka J. Math., Vol. 17, 1980, pp. 95-110). | MR | Zbl
,[11] Minimal Varieties in Riemannian Manifolds (Ann. of Math., Vol. 88, 1968, pp. 62-105). | MR | Zbl
,Cited by Sources: