@article{ASENS_1984_4_17_3_451_0, author = {Borell, Christer}, title = {Hitting probabilities of killed brownian motion : a study on geometric regularity}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {451--467}, publisher = {Elsevier}, volume = {Ser. 4, 17}, number = {3}, year = {1984}, doi = {10.24033/asens.1480}, mrnumber = {86h:60157}, zbl = {0573.60067}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.1480/} }
TY - JOUR AU - Borell, Christer TI - Hitting probabilities of killed brownian motion : a study on geometric regularity JO - Annales scientifiques de l'École Normale Supérieure PY - 1984 SP - 451 EP - 467 VL - 17 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.24033/asens.1480/ DO - 10.24033/asens.1480 LA - en ID - ASENS_1984_4_17_3_451_0 ER -
%0 Journal Article %A Borell, Christer %T Hitting probabilities of killed brownian motion : a study on geometric regularity %J Annales scientifiques de l'École Normale Supérieure %D 1984 %P 451-467 %V 17 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.24033/asens.1480/ %R 10.24033/asens.1480 %G en %F ASENS_1984_4_17_3_451_0
Borell, Christer. Hitting probabilities of killed brownian motion : a study on geometric regularity. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 17 (1984) no. 3, pp. 451-467. doi : 10.24033/asens.1480. http://archive.numdam.org/articles/10.24033/asens.1480/
[1] Conformal Invariants (Topics in Geometric Function Theory, New York, McGraw Hill, 1973). | Zbl
,[2] Möbius Transformations in Several Dimensions (School of Math., Univ. of Minnesota 1981). | Zbl
,[3] Markov Processes and Potential Theory, New York, London, Academic Press 1968. | MR | Zbl
, and ,[4] Capacitary Inequalities of the Brunn-Minkowski Type (Math. Ann., 263, 1983, pp. 179-184). | MR | Zbl
,[5] Brownian Motion in a Convex Ring and Quasi-Concavity (Commun. Math. Phys., 86, 1982, pp. 143-147). | MR | Zbl
,[6] Convex Measures on Locally Convex Spaces (Ark. Mat., 12, 1974, pp. 239-252). | MR | Zbl
,[7] Convexity of Measures in Certain Convex Cones in Vector Space σ-Algebras (Math. Scand. 53, 1983, pp. 125-144). | MR | Zbl
,[8] Convex Set Functions in d-space (Period. Math., Hungar, 6, 1975, pp. 111-136). | MR | Zbl
,[9] Some Inequalities for Gaussian Measures, In : Functional Integral and Its Applications, Edited by A. M. Arthurs, Oxford, Clarendon Press, 1975.
and ,[10] On Extensions of the Brunn-Minkowski and Prékopa-Leindler Theorems, Including Inequalities for Log Concave Functions, and with an Application to the Diffusion Equation, Berlin, Heidelberg, New York : Springer-Verlag, 644, 1978, pp. 96-124).
and ,[11] Tensor Product of Gaussian Measures (Lecture Notes in Math., 644, 1978, pp. 96-124). Berlin, Heidelberg, New York, Springer-Verlag. | MR | Zbl
,[12] Stochastic Partial Differential Equations in Turbulence Related Problems, In : Probabilistic Analysis and Related Topics, Vol. 1, Edited by A. T. Bharucha-Reid, New York, San Francisco, London, Academic Press, 1978. | MR | Zbl
,[13] Markov processes, Vol. I-II, Berlin, Göttingen, Heidelberg, Springer-Verlag, 1965. | MR | Zbl
,[14] Symétrisation dans l'espace de Gauss (Math. Scand. 53, 1983, pp. 281-301). | MR | Zbl
,[15] An Extended Principle of the Maximum for Harmonic Functions in 3-dimensions (J. London Math. Soc., 30, 1955, pp. 388-401). | MR | Zbl
,[16] A Result Concerning Convex Level Surfaces of 3-dimensional Harmonic Functions (J. London Math. Soc., 32, 1957, pp. 286-294). | MR | Zbl
,[17] Elliptic Partial Differential Equations of Second Order, Berlin, Heidelberg, New York, Springer-Verlag, 1977. | MR | Zbl
and ,[18] Potential Theory on Hilbert Space (J. Functional Analysis, 1, 1967, pp. 123-181). | MR | Zbl
,[19] Capacitary Functions in Convex Rings (Arch. Rational Mech. Anal., 66, 1977, pp. 201-224). | MR | Zbl
,[20] Two Geometrical Properties of Solutions of Semilinear problems (Applicable Analysis, 12, 1981, pp. 267-272). | MR | Zbl
,[21] Aufgaben und Lehrsötze aus der Analysis II, Berlin, Göttingen, Heidelberg, Springer-Verlag, 1954.
and ,[22] Brownian Motion and Classical Potential Theory, New York, San Francisco, London, Academic Press, 1978. | MR | Zbl
and ,[23] Über Einige Neue Extremaleigenschaften der Kugel. Math. Zeit., 33, 1931, pp. 419-425). | EuDML | JFM | Zbl
,Cited by Sources: