@article{ASENS_1986_4_19_4_491_0, author = {Fried, David}, title = {The zeta functions of {Ruelle} and {Selberg.} {I}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {491--517}, publisher = {Elsevier}, volume = {Ser. 4, 19}, number = {4}, year = {1986}, doi = {10.24033/asens.1515}, mrnumber = {88k:58134}, zbl = {0609.58033}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.1515/} }
TY - JOUR AU - Fried, David TI - The zeta functions of Ruelle and Selberg. I JO - Annales scientifiques de l'École Normale Supérieure PY - 1986 SP - 491 EP - 517 VL - 19 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.24033/asens.1515/ DO - 10.24033/asens.1515 LA - en ID - ASENS_1986_4_19_4_491_0 ER -
Fried, David. The zeta functions of Ruelle and Selberg. I. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 19 (1986) no. 4, pp. 491-517. doi : 10.24033/asens.1515. https://www.numdam.org/articles/10.24033/asens.1515/
[A] Geodesic flows on closed Riemannian manifolds of negative curvature (Proc. Steklov Inst. Math., Vol. 90, 1967). | MR | Zbl
,[AB] Notes on the Lefschetz fixed point theorem for elliptic complexes, Harvard, 1964. | Zbl
and ,[AW] Similarity of automorphisms of the torus (Mem. AMS, Vol. 98, 1970). | MR | Zbl
and ,[BT] Differential forms in algebraic topology, Springer GTM 82, 1982. | MR | Zbl
and ,[B1] Symbolic dynamics for hyperbolic flows (Amer. J. Math., Vol. 95, 1973, pp. 429-460). | MR | Zbl
,[B2] On Axiom A diffeomorphisms (CBMS Reg. Conf. 35, AMS, Providence, 1978). | MR | Zbl
,[Bo] Entire functions, Academic Press, 1954. | MR | Zbl
,[E] Opera omnia, Teubner, 1922.
,[Fr1] Anosov diffeomorphisms (Proc. Symp. Pure Math., Vol. 14, AMS, Providence 1970, pp. 133-164). | MR | Zbl
,[Fr2] Homology and dynamical systems (CBMS Reg. Conf., Vol. 49, AMS, Providence, 1982). | MR | Zbl
,[F1] Homological identities for closed orbits (Inv. Math., Vol. 71, 1984, pp. 419-442). | MR | Zbl
,[F2] Fuchsian groups and Reidemeister torsion (Contemp. Math., Vol. 53, 1986, pp. 141-163). | MR | Zbl
,[F3] Efficiency vs. hyperbolicity on tori, (Springer LNM, Vol. 819, 1980, pp. 175-189). | MR | Zbl
,[F4] Anosov foliations and cohomology (Erg. Th. & Dyn. Syst., Vol. 6, 1986, pp. 9-16). | MR | Zbl
,[F5] Analytic torsion and closed geodesics on hyperbolic manifolds. (Inv. Math., Vol. 84, 1986, pp. 523-540). | MR | Zbl
,[F6] Torsion and closed geodesics on complex hyperbolic manifolds, preprint.
,[G] Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one (Ill. J. Math, Vol. 21, 1977, pp. 1-41). | MR | Zbl
,[G-F] Geodesic flows on manifolds of constant negative curvature (Usp. Mat. Nauk., Vol. 7, 1952, pp. 118-137, and AMS Translations, Vol. 1, 1955, pp. 49-65). | Zbl
and ,[Gr1] La théorie de Fredholm (Bull. Soc. Math. France, Vol. 84, 1956, pp. 319-384). | Numdam | MR | Zbl
,[Gr2] Espaces Nucléaires (Mem. AMS, Vol. 16, Providence, 1955).
,[H] The Selberg trace formula for PSL (2, R), Springer LNM, Vol. 548, 1976 and Vol. 1001, 1983. | MR | Zbl
,[HPS] Invariant manifolds, Springer LNM, Vol. 583, 1977. | MR | Zbl
, and ,[HR] The general theory of Dirichlet series, Cambridge, 1952.
and ,[Ma1] Axiom A diffeomorphisms have rational zeta functions (Bull. London Math. Soc., Vol. 3, 1971, pp. 215-220). | MR | Zbl
,[Ma2] Anosov diffeomorphisms on nilmanifolds (Proc. AMS, Vol. 38, 1973, pp. 423-426). | MR | Zbl
,[M] Closed geodesics and the ƞ-invariant (Annals of Math., Vol. 108, 1978, pp. 1-39). | MR | Zbl
,[PPo] An analogue of the prime number theorem for closed orbits of Axiom A flows (Annals of Math., Vol. 118, 1983, pp. 573-592). | MR | Zbl
and ,[Po] Meromorphic extensions of generalized zeta functions (Inv. Math., Vol. 85, 1986, pp. 147-164). | EuDML | MR | Zbl
,[Ra1] On the asymptotic distribution of closed geodesics on compact Riemann surfaces (Trans. AMS, Vol. 233, 1977, p. 241-247). | MR
,[Ra2] The Selberg trace formula, Chapter XI in Eigenvalues in Riemannian geometry, Academic Press, 1984.
,[R] Markov decomposition for an Y-flow on a three-dimensional manifold (Math. Notes, Vol. 6, pp. 880-886). | MR | Zbl
,[RS] Analytic torsion for complex manifolds (Annals of Math., Vol. 98, 1973, pp. 154-177). | MR | Zbl
and ,[R1] Zeta functions for expanding maps and Anosov flows (Inv. Math., Vol. 34, 1976, pp. 231-242). | EuDML | MR | Zbl
,[R2] Thermodynamic formalism, Addison-Wesley, Reading, 1978. | MR | Zbl
,[Sa] The arithmetic and geometry of some hyperbolic three manifolds (Acta Math., Vol. 151, 1983, pp. 253-295). | MR | Zbl
,[Sc] Selberg type zeta functions for the group of complex two by two matrices of determinant one (Math. Ann., Vol. 253, 1980, pp. 177-194). | EuDML | MR | Zbl
,[S] Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series (J. Indian Math. Soc., Vol. 20, 1956, pp. 47-87). | MR | Zbl
,[Si] Construction of Markov partitions (Func. Anal. Appl., Vol. 2, 1968, pp. 70-80). | Zbl
,[Sm] Differentiable dynamical systems (Bull. AMS, Vol. 73, 1967, pp. 747-817). | MR | Zbl
,[T1] Anosov flows on infra-homogeneous spaces (Proc. Symp. Pure Math, T. 14, Providence, 1970, pp. 299-327). | MR | Zbl
,[T2] On the classification of Anosov flows (Topology, Vol. 14, 1975, pp. 179-189). | MR | Zbl
,[W] Zeta functions of Selberg's type associated with homogeneous vector bundles (Hiroshima Math. J., Vol. 15, 1985, pp. 235-295). | MR | Zbl
,- Distribution of Ruelle resonances for real-analytic Anosov diffeomorphisms, Annales Henri Lebesgue, Volume 7 (2024), p. 673 | DOI:10.5802/ahl.208
- Resonances and Weighted Zeta Functions for Obstacle Scattering via Smooth Models, Annales Henri Poincaré, Volume 25 (2024) no. 2, p. 1607 | DOI:10.1007/s00023-023-01379-x
- Zeta functions in higher Teichmüller theory, Mathematische Zeitschrift, Volume 306 (2024) no. 3 | DOI:10.1007/s00209-024-03437-4
- Projective Cones for Sequential Dispersing Billiards, Communications in Mathematical Physics, Volume 401 (2023) no. 1, p. 841 | DOI:10.1007/s00220-023-04657-1
- Gallagherian PGT on Some Compact Riemannian Manifolds of Negative Curvature, Bulletin of the Malaysian Mathematical Sciences Society, Volume 45 (2022) no. 4, p. 1669 | DOI:10.1007/s40840-022-01273-5
- Dynamical zeta functions for geodesic flows and the higher-dimensional Reidemeister torsion for Fuchsian groups, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2022 (2022) no. 784, p. 155 | DOI:10.1515/crelle-2021-0075
- A transfer-operator-based relation between Laplace eigenfunctions and zeros of Selberg zeta functions, Ergodic Theory and Dynamical Systems, Volume 40 (2020) no. 3, p. 612 | DOI:10.1017/etds.2018.51
- On the error term in the prime geodesic theorem for SL4, Journal of Physics: Conference Series, Volume 1564 (2020) no. 1, p. 012022 | DOI:10.1088/1742-6596/1564/1/012022
- Virtual homological spectral radii for automorphisms of surfaces, Journal of the American Mathematical Society, Volume 33 (2020) no. 4, p. 1167 | DOI:10.1090/jams/949
- Ruelle zeta function for cofinite hyperbolic Riemann surfaces with ramification points, Letters in Mathematical Physics, Volume 110 (2020) no. 1, p. 61 | DOI:10.1007/s11005-019-01222-7
- Prime Geodesic Theorems for Compact Locally Symmetric Spaces of Real Rank One, Mathematics, Volume 8 (2020) no. 10, p. 1762 | DOI:10.3390/math8101762
- Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy, Selecta Mathematica, Volume 26 (2020) no. 1 | DOI:10.1007/s00029-019-0534-3
- On Some Classical andWeighted Estimates for SL4, WSEAS TRANSACTIONS ON SYSTEMS AND CONTROL, Volume 15 (2020), p. 39 | DOI:10.37394/23203.2020.15.5
- On the logarithmic derivative of zeta functions for compact even-dimensional locally symmetric spaces of real rank one, Mathematica Slovaca, Volume 69 (2019) no. 2, p. 311 | DOI:10.1515/ms-2017-0224
- Introduction, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 1 | DOI:10.1007/978-3-319-77661-3_1
- Dynamical determinants for smooth hyperbolic dynamics, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 183 | DOI:10.1007/978-3-319-77661-3_6
- Smooth expanding maps: The spectrum of the transfer operator, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 21 | DOI:10.1007/978-3-319-77661-3_2
- Smooth expanding maps: Dynamical determinants, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 79 | DOI:10.1007/978-3-319-77661-3_3
- Spectral structure of transfer operators for expanding circle maps, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 34 (2017) no. 1, p. 31 | DOI:10.1016/j.anihpc.2015.08.004
- The Quest for the Ultimate Anisotropic Banach Space, Journal of Statistical Physics, Volume 166 (2017) no. 3-4, p. 525 | DOI:10.1007/s10955-016-1663-0
- Introduction, Selberg Zeta Functions and Transfer Operators, Volume 2139 (2017), p. 1 | DOI:10.1007/978-3-319-51296-9_1
- Transfer Operators for the Geodesic Flow on Hyperbolic Surfaces, Selberg Zeta Functions and Transfer Operators, Volume 2139 (2017), p. 129 | DOI:10.1007/978-3-319-51296-9_7
- Toeplitz Operators, Analytic Torsion, and the Hypoelliptic Laplacian, Letters in Mathematical Physics, Volume 106 (2016) no. 12, p. 1639 | DOI:10.1007/s11005-016-0886-y
- The Nielsen and Reidemeister numbers of maps on infra-solvmanifolds of type (R), Topology and its Applications, Volume 181 (2015), p. 62 | DOI:10.1016/j.topol.2014.12.003
- Eigenvalues of Transfer Operators for Dynamical Systems with Holes, Ergodic Theory, Open Dynamics, and Coherent Structures, Volume 70 (2014), p. 31 | DOI:10.1007/978-1-4939-0419-8_2
- Dynamics and Zeta functions on conformally compact manifolds, Transactions of the American Mathematical Society, Volume 367 (2014) no. 4, p. 2459 | DOI:10.1090/s0002-9947-2014-05999-0
- Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow, Annals of Mathematics, Volume 178 (2013) no. 2, p. 385 | DOI:10.4007/annals.2013.178.2.1
- Fractal Weyl laws for asymptotically hyperbolic manifolds, Geometric and Functional Analysis, Volume 23 (2013) no. 4, p. 1145 | DOI:10.1007/s00039-013-0225-8
- Analytic expanding circle maps with explicit spectra, Nonlinearity, Volume 26 (2013) no. 12, p. 3231 | DOI:10.1088/0951-7715/26/12/3231
- The Ruelle spectrum of generic transfer operators, Discrete Continuous Dynamical Systems - A, Volume 32 (2012) no. 7, p. 2521 | DOI:10.3934/dcds.2012.32.2521
- Eta invariant and Selberg zeta function of odd type over convex co-compact hyperbolic manifolds, Advances in Mathematics, Volume 225 (2010) no. 5, p. 2464 | DOI:10.1016/j.aim.2010.05.004
- The Determinant of the Dirichlet-to-Neumann Map for Surfaces with Boundary, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnm099
- Maximal Lyapunov exponents for random matrix products, Inventiones mathematicae, Volume 181 (2010) no. 1, p. 209 | DOI:10.1007/s00222-010-0246-y
- The zeta functions of Ruelle and Selberg for hyperbolic manifolds with cusps, Mathematische Annalen, Volume 346 (2010) no. 3, p. 719 | DOI:10.1007/s00208-009-0408-7
- Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions, Advances in Mathematics, Volume 218 (2008) no. 3, p. 902 | DOI:10.1016/j.aim.2008.02.005
- Loop Spaces and the hypoelliptic Laplacian, Communications on Pure and Applied Mathematics, Volume 61 (2008) no. 4, p. 559 | DOI:10.1002/cpa.20190
- Explicit A Priori Bounds on Transfer Operator Eigenvalues, Communications in Mathematical Physics, Volume 276 (2007) no. 3, p. 901 | DOI:10.1007/s00220-007-0355-7
- Regularization for Dynamical ζ-Functions, Encyclopedia of Mathematical Physics (2006), p. 386 | DOI:10.1016/b0-12-512666-2/00091-2
- Dynamical Zeta Functions and Closed Orbits for Geodesic and Hyperbolic Flows, Frontiers in Number Theory, Physics, and Geometry I (2006), p. 379 | DOI:10.1007/978-3-540-31347-2_11
- Orthonormal expansions of invariant densities for expanding maps, Advances in Mathematics, Volume 192 (2005) no. 1, p. 1 | DOI:10.1016/j.aim.2003.09.011
- Reduction theory over quadratic imaginary fields, Journal of Number Theory, Volume 110 (2005) no. 1, p. 44 | DOI:10.1016/j.jnt.2004.08.001
- The hypoelliptic Laplacian on the cotangent bundle, Journal of the American Mathematical Society, Volume 18 (2005) no. 2, p. 379 | DOI:10.1090/s0894-0347-05-00479-0
- The Selberg Zeta Function for Convex Co-Compact Schottky Groups, Communications in Mathematical Physics, Volume 245 (2004) no. 1, p. 149 | DOI:10.1007/s00220-003-1007-1
- Growth of the zeta function for a quadratic map and the dimension of the Julia set, Nonlinearity, Volume 17 (2004) no. 5, p. 1607 | DOI:10.1088/0951-7715/17/5/003
- THE EULER-SELBERG CONSTANTS FOR NON-UNIFORM LATTICES OF RANK ONE SYMMETRIC SPACES, Kyushu Journal of Mathematics, Volume 57 (2003) no. 2, p. 347 | DOI:10.2206/kyushujm.57.347
- Chapter 5 Periodic orbits and zeta functions, Volume 1 (2002), p. 409 | DOI:10.1016/s1874-575x(02)80007-8
- The divisor of Selberg's zeta function for Kleinian groups, Duke Mathematical Journal, Volume 106 (2001) no. 2 | DOI:10.1215/s0012-7094-01-10624-8
- Zeta functions for certain multi-dimensional non-hyperbolic maps, Nonlinearity, Volume 14 (2001) no. 5, p. 1265 | DOI:10.1088/0951-7715/14/5/317
- On Dynamical Systems and Their Possible Significance for Arithmetic Geometry, Regulators in Analysis, Geometry and Number Theory (2000), p. 29 | DOI:10.1007/978-1-4612-1314-7_3
- Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems, Ergodic Theory and Dynamical Systems, Volume 16 (1996) no. 4, p. 805 | DOI:10.1017/s0143385700009111
- Secondary invariants and the singularity of the Ruelle zeta-function in the central critical point, Bulletin of the American Mathematical Society, Volume 32 (1995) no. 1, p. 80 | DOI:10.1090/s0273-0979-1995-00570-7
- Analytic Torsion, Flows and Foliations, Hamiltonian Dynamical Systems, Volume 63 (1995), p. 181 | DOI:10.1007/978-1-4613-8448-9_13
- Dynamical Zeta Functions, Real and Complex Dynamical Systems (1995), p. 1 | DOI:10.1007/978-94-015-8439-5_1
- The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one, theta functions, trace formulas and the Selberg zeta function, Annals of Global Analysis and Geometry, Volume 12 (1994) no. 1, p. 357 | DOI:10.1007/bf02108307
- A Fredholm determinant for semiclassical quantization, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 3 (1993) no. 4, p. 619 | DOI:10.1063/1.165992
- Quantum maps from transfer operators, Physica D: Nonlinear Phenomena, Volume 67 (1993) no. 1-3, p. 88 | DOI:10.1016/0167-2789(93)90199-b
- Zeta Functions and Periodic Orbit Theory: A Review, Results in Mathematics, Volume 23 (1993) no. 1-2, p. 55 | DOI:10.1007/bf03323131
-
-Torsion, foliations and holomorphic vector fields, Communications in Mathematical Physics, Volume 145 (1992) no. 3, p. 447 | DOI:10.1007/bf02099393 - A factorization of the selberg zeta function attached to a rank 1 space form, Manuscripta Mathematica, Volume 77 (1992) no. 1, p. 17 | DOI:10.1007/bf02567041
- Some Zeta Functions Attached to Γ/K, New Developments in Lie Theory and Their Applications, Volume 105 (1992), p. 163 | DOI:10.1007/978-1-4612-2978-0_10
- Gamma factors and Plancherel measures, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 68 (1992) no. 9 | DOI:10.3792/pjaa.68.256
- The Selberg zeta function and scattering poles for Kleinian groups, Bulletin of the American Mathematical Society, Volume 24 (1991) no. 2, p. 327 | DOI:10.1090/s0273-0979-1991-16024-6
- The thermodynamic formalism approach to Selberg’s zeta function for 𝑃𝑆𝐿(2,𝐙), Bulletin of the American Mathematical Society, Volume 25 (1991) no. 1, p. 55 | DOI:10.1090/s0273-0979-1991-16023-4
- A note on the Selberg zeta function for compact quotients of hyperbolic spaces, Hiroshima Mathematical Journal, Volume 21 (1991) no. 3 | DOI:10.32917/hmj/1206128720
- Periodic orbit expansions for classical smooth flows, Journal of Physics A: Mathematical and General, Volume 24 (1991) no. 5, p. L237 | DOI:10.1088/0305-4470/24/5/005
- A note on the Artuso-Aurell-Cvitanovic approach to the Feigenbaum tangent operator, Journal of Statistical Physics, Volume 62 (1991) no. 1-2, p. 257 | DOI:10.1007/bf01020869
- Periodic orbits as the skeleton of classical and quantum chaos, Physica D: Nonlinear Phenomena, Volume 51 (1991) no. 1-3, p. 138 | DOI:10.1016/0167-2789(91)90227-z
- Selberg zeta functions and Ruelle operators for function fields, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 67 (1991) no. 8 | DOI:10.3792/pjaa.67.255
- The Selberg Zeta-Function of a Kleinian Group, Number Theory, Trace Formulas and Discrete Groups (1989), p. 409 | DOI:10.1016/b978-0-12-067570-8.50031-7
- Torsion and closed geodesics on complex hyperbolic manifolds, Inventiones Mathematicae, Volume 91 (1988) no. 1, p. 31 | DOI:10.1007/bf01404911
Cité par 70 documents. Sources : Crossref