The zeta functions of Ruelle and Selberg. I
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 19 (1986) no. 4, pp. 491-517.
@article{ASENS_1986_4_19_4_491_0,
     author = {Fried, David},
     title = {The zeta functions of {Ruelle} and {Selberg.} {I}},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {491--517},
     publisher = {Elsevier},
     volume = {Ser. 4, 19},
     number = {4},
     year = {1986},
     doi = {10.24033/asens.1515},
     mrnumber = {88k:58134},
     zbl = {0609.58033},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.1515/}
}
TY  - JOUR
AU  - Fried, David
TI  - The zeta functions of Ruelle and Selberg. I
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 1986
SP  - 491
EP  - 517
VL  - 19
IS  - 4
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.24033/asens.1515/
DO  - 10.24033/asens.1515
LA  - en
ID  - ASENS_1986_4_19_4_491_0
ER  - 
%0 Journal Article
%A Fried, David
%T The zeta functions of Ruelle and Selberg. I
%J Annales scientifiques de l'École Normale Supérieure
%D 1986
%P 491-517
%V 19
%N 4
%I Elsevier
%U https://www.numdam.org/articles/10.24033/asens.1515/
%R 10.24033/asens.1515
%G en
%F ASENS_1986_4_19_4_491_0
Fried, David. The zeta functions of Ruelle and Selberg. I. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 19 (1986) no. 4, pp. 491-517. doi : 10.24033/asens.1515. https://www.numdam.org/articles/10.24033/asens.1515/

[A] D. Anosov, Geodesic flows on closed Riemannian manifolds of negative curvature (Proc. Steklov Inst. Math., Vol. 90, 1967). | MR | Zbl

[AB] M. Atiyah and R. Bott, Notes on the Lefschetz fixed point theorem for elliptic complexes, Harvard, 1964. | Zbl

[AW] R. Adler and B. Weiss, Similarity of automorphisms of the torus (Mem. AMS, Vol. 98, 1970). | MR | Zbl

[BT] R. Bott and L. Tu, Differential forms in algebraic topology, Springer GTM 82, 1982. | MR | Zbl

[B1] R. Bowen, Symbolic dynamics for hyperbolic flows (Amer. J. Math., Vol. 95, 1973, pp. 429-460). | MR | Zbl

[B2] R. Bowen, On Axiom A diffeomorphisms (CBMS Reg. Conf. 35, AMS, Providence, 1978). | MR | Zbl

[Bo] R. Boas, Entire functions, Academic Press, 1954. | MR | Zbl

[E] L. Euler, Opera omnia, Teubner, 1922.

[Fr1] J. Franks, Anosov diffeomorphisms (Proc. Symp. Pure Math., Vol. 14, AMS, Providence 1970, pp. 133-164). | MR | Zbl

[Fr2] J. Franks, Homology and dynamical systems (CBMS Reg. Conf., Vol. 49, AMS, Providence, 1982). | MR | Zbl

[F1] D. Fried, Homological identities for closed orbits (Inv. Math., Vol. 71, 1984, pp. 419-442). | MR | Zbl

[F2] D. Fried, Fuchsian groups and Reidemeister torsion (Contemp. Math., Vol. 53, 1986, pp. 141-163). | MR | Zbl

[F3] D. Fried, Efficiency vs. hyperbolicity on tori, (Springer LNM, Vol. 819, 1980, pp. 175-189). | MR | Zbl

[F4] D. Fried, Anosov foliations and cohomology (Erg. Th. & Dyn. Syst., Vol. 6, 1986, pp. 9-16). | MR | Zbl

[F5] D. Fried, Analytic torsion and closed geodesics on hyperbolic manifolds. (Inv. Math., Vol. 84, 1986, pp. 523-540). | MR | Zbl

[F6] D. Fried, Torsion and closed geodesics on complex hyperbolic manifolds, preprint.

[G] R. Gangolli, Zeta functions of Selberg's type for compact space forms of symmetric spaces of rank one (Ill. J. Math, Vol. 21, 1977, pp. 1-41). | MR | Zbl

[G-F] I. Gelfand and S. Fomin, Geodesic flows on manifolds of constant negative curvature (Usp. Mat. Nauk., Vol. 7, 1952, pp. 118-137, and AMS Translations, Vol. 1, 1955, pp. 49-65). | Zbl

[Gr1] A. Grothendieck, La théorie de Fredholm (Bull. Soc. Math. France, Vol. 84, 1956, pp. 319-384). | Numdam | MR | Zbl

[Gr2] A. Grothendieck, Espaces Nucléaires (Mem. AMS, Vol. 16, Providence, 1955).

[H] D. Hejhal, The Selberg trace formula for PSL (2, R), Springer LNM, Vol. 548, 1976 and Vol. 1001, 1983. | MR | Zbl

[HPS] M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Springer LNM, Vol. 583, 1977. | MR | Zbl

[HR] G. Hardy and M. Riesz, The general theory of Dirichlet series, Cambridge, 1952.

[Ma1] A. Manning, Axiom A diffeomorphisms have rational zeta functions (Bull. London Math. Soc., Vol. 3, 1971, pp. 215-220). | MR | Zbl

[Ma2] A. Manning, Anosov diffeomorphisms on nilmanifolds (Proc. AMS, Vol. 38, 1973, pp. 423-426). | MR | Zbl

[M] J. Millson, Closed geodesics and the ƞ-invariant (Annals of Math., Vol. 108, 1978, pp. 1-39). | MR | Zbl

[PPo] W. Perry and M. Pollicott, An analogue of the prime number theorem for closed orbits of Axiom A flows (Annals of Math., Vol. 118, 1983, pp. 573-592). | MR | Zbl

[Po] M. Pollicott, Meromorphic extensions of generalized zeta functions (Inv. Math., Vol. 85, 1986, pp. 147-164). | EuDML | MR | Zbl

[Ra1] B. Randol, On the asymptotic distribution of closed geodesics on compact Riemann surfaces (Trans. AMS, Vol. 233, 1977, p. 241-247). | MR

[Ra2] B. Randol, The Selberg trace formula, Chapter XI in Eigenvalues in Riemannian geometry, Academic Press, 1984.

[R] M. Ratner, Markov decomposition for an Y-flow on a three-dimensional manifold (Math. Notes, Vol. 6, pp. 880-886). | MR | Zbl

[RS] D. Ray and I. Singer, Analytic torsion for complex manifolds (Annals of Math., Vol. 98, 1973, pp. 154-177). | MR | Zbl

[R1] D. Ruelle, Zeta functions for expanding maps and Anosov flows (Inv. Math., Vol. 34, 1976, pp. 231-242). | EuDML | MR | Zbl

[R2] D. Ruelle, Thermodynamic formalism, Addison-Wesley, Reading, 1978. | MR | Zbl

[Sa] P. Sarnak, The arithmetic and geometry of some hyperbolic three manifolds (Acta Math., Vol. 151, 1983, pp. 253-295). | MR | Zbl

[Sc] D. Scott, Selberg type zeta functions for the group of complex two by two matrices of determinant one (Math. Ann., Vol. 253, 1980, pp. 177-194). | EuDML | MR | Zbl

[S] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series (J. Indian Math. Soc., Vol. 20, 1956, pp. 47-87). | MR | Zbl

[Si] Y. Sinai, Construction of Markov partitions (Func. Anal. Appl., Vol. 2, 1968, pp. 70-80). | Zbl

[Sm] S. Smale, Differentiable dynamical systems (Bull. AMS, Vol. 73, 1967, pp. 747-817). | MR | Zbl

[T1] P. Tomter, Anosov flows on infra-homogeneous spaces (Proc. Symp. Pure Math, T. 14, Providence, 1970, pp. 299-327). | MR | Zbl

[T2] P. Tomter, On the classification of Anosov flows (Topology, Vol. 14, 1975, pp. 179-189). | MR | Zbl

[W] M. Wakayama, Zeta functions of Selberg's type associated with homogeneous vector bundles (Hiroshima Math. J., Vol. 15, 1985, pp. 235-295). | MR | Zbl

  • Jézéquel, Malo Distribution of Ruelle resonances for real-analytic Anosov diffeomorphisms, Annales Henri Lebesgue, Volume 7 (2024), p. 673 | DOI:10.5802/ahl.208
  • Delarue, Benjamin; Schütte, Philipp; Weich, Tobias Resonances and Weighted Zeta Functions for Obstacle Scattering via Smooth Models, Annales Henri Poincaré, Volume 25 (2024) no. 2, p. 1607 | DOI:10.1007/s00023-023-01379-x
  • Pollicott, Mark; Sharp, Richard Zeta functions in higher Teichmüller theory, Mathematische Zeitschrift, Volume 306 (2024) no. 3 | DOI:10.1007/s00209-024-03437-4
  • Demers, Mark F.; Liverani, Carlangelo Projective Cones for Sequential Dispersing Billiards, Communications in Mathematical Physics, Volume 401 (2023) no. 1, p. 841 | DOI:10.1007/s00220-023-04657-1
  • Gušić, Dženan Gallagherian PGT on Some Compact Riemannian Manifolds of Negative Curvature, Bulletin of the Malaysian Mathematical Sciences Society, Volume 45 (2022) no. 4, p. 1669 | DOI:10.1007/s40840-022-01273-5
  • Yamaguchi, Yoshikazu Dynamical zeta functions for geodesic flows and the higher-dimensional Reidemeister torsion for Fuchsian groups, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2022 (2022) no. 784, p. 155 | DOI:10.1515/crelle-2021-0075
  • ADAM, ALEXANDER; POHL, ANKE A transfer-operator-based relation between Laplace eigenfunctions and zeros of Selberg zeta functions, Ergodic Theory and Dynamical Systems, Volume 40 (2020) no. 3, p. 612 | DOI:10.1017/etds.2018.51
  • Gušić, Dž On the error term in the prime geodesic theorem for SL4, Journal of Physics: Conference Series, Volume 1564 (2020) no. 1, p. 012022 | DOI:10.1088/1742-6596/1564/1/012022
  • Liu, Yi Virtual homological spectral radii for automorphisms of surfaces, Journal of the American Mathematical Society, Volume 33 (2020) no. 4, p. 1167 | DOI:10.1090/jams/949
  • Teo, Lee-Peng Ruelle zeta function for cofinite hyperbolic Riemann surfaces with ramification points, Letters in Mathematical Physics, Volume 110 (2020) no. 1, p. 61 | DOI:10.1007/s11005-019-01222-7
  • Gušić, Dženan Prime Geodesic Theorems for Compact Locally Symmetric Spaces of Real Rank One, Mathematics, Volume 8 (2020) no. 10, p. 1762 | DOI:10.3390/math8101762
  • Fedosova, Ksenia; Pohl, Anke Meromorphic continuation of Selberg zeta functions with twists having non-expanding cusp monodromy, Selecta Mathematica, Volume 26 (2020) no. 1 | DOI:10.1007/s00029-019-0534-3
  • Gusic, Dzenan On Some Classical andWeighted Estimates for SL4, WSEAS TRANSACTIONS ON SYSTEMS AND CONTROL, Volume 15 (2020), p. 39 | DOI:10.37394/23203.2020.15.5
  • Avdispahić, Muharem; Gušić, Dženan On the logarithmic derivative of zeta functions for compact even-dimensional locally symmetric spaces of real rank one, Mathematica Slovaca, Volume 69 (2019) no. 2, p. 311 | DOI:10.1515/ms-2017-0224
  • Baladi, Viviane Introduction, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 1 | DOI:10.1007/978-3-319-77661-3_1
  • Baladi, Viviane Dynamical determinants for smooth hyperbolic dynamics, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 183 | DOI:10.1007/978-3-319-77661-3_6
  • Baladi, Viviane Smooth expanding maps: The spectrum of the transfer operator, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 21 | DOI:10.1007/978-3-319-77661-3_2
  • Baladi, Viviane Smooth expanding maps: Dynamical determinants, Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps (2018), p. 79 | DOI:10.1007/978-3-319-77661-3_3
  • Just, Wolfram; Slipantschuk, Julia; Bandtlow, Oscar F. Spectral structure of transfer operators for expanding circle maps, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 34 (2017) no. 1, p. 31 | DOI:10.1016/j.anihpc.2015.08.004
  • Baladi, Viviane The Quest for the Ultimate Anisotropic Banach Space, Journal of Statistical Physics, Volume 166 (2017) no. 3-4, p. 525 | DOI:10.1007/s10955-016-1663-0
  • Fraczek, Markus Szymon Introduction, Selberg Zeta Functions and Transfer Operators, Volume 2139 (2017), p. 1 | DOI:10.1007/978-3-319-51296-9_1
  • Fraczek, Markus Szymon Transfer Operators for the Geodesic Flow on Hyperbolic Surfaces, Selberg Zeta Functions and Transfer Operators, Volume 2139 (2017), p. 129 | DOI:10.1007/978-3-319-51296-9_7
  • Bismut, Jean-Michel Toeplitz Operators, Analytic Torsion, and the Hypoelliptic Laplacian, Letters in Mathematical Physics, Volume 106 (2016) no. 12, p. 1639 | DOI:10.1007/s11005-016-0886-y
  • Fel'shtyn, Alexander; Lee, Jong Bum The Nielsen and Reidemeister numbers of maps on infra-solvmanifolds of type (R), Topology and its Applications, Volume 181 (2015), p. 62 | DOI:10.1016/j.topol.2014.12.003
  • Bandtlow, Oscar F.; Jenkinson, Oliver Eigenvalues of Transfer Operators for Dynamical Systems with Holes, Ergodic Theory, Open Dynamics, and Coherent Structures, Volume 70 (2014), p. 31 | DOI:10.1007/978-1-4939-0419-8_2
  • Rowlett, Julie; Suárez-Serrato, Pablo; Tapie, Samuel Dynamics and Zeta functions on conformally compact manifolds, Transactions of the American Mathematical Society, Volume 367 (2014) no. 4, p. 2459 | DOI:10.1090/s0002-9947-2014-05999-0
  • Avila, Artur; Gouëzel, Sébastien Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow, Annals of Mathematics, Volume 178 (2013) no. 2, p. 385 | DOI:10.4007/annals.2013.178.2.1
  • Datchev, Kiril; Dyatlov, Semyon Fractal Weyl laws for asymptotically hyperbolic manifolds, Geometric and Functional Analysis, Volume 23 (2013) no. 4, p. 1145 | DOI:10.1007/s00039-013-0225-8
  • Slipantschuk, Julia; Bandtlow, Oscar F; Just, Wolfram Analytic expanding circle maps with explicit spectra, Nonlinearity, Volume 26 (2013) no. 12, p. 3231 | DOI:10.1088/0951-7715/26/12/3231
  • Naud, Frédéric The Ruelle spectrum of generic transfer operators, Discrete Continuous Dynamical Systems - A, Volume 32 (2012) no. 7, p. 2521 | DOI:10.3934/dcds.2012.32.2521
  • Guillarmou, Colin; Moroianu, Sergiu; Park, Jinsung Eta invariant and Selberg zeta function of odd type over convex co-compact hyperbolic manifolds, Advances in Mathematics, Volume 225 (2010) no. 5, p. 2464 | DOI:10.1016/j.aim.2010.05.004
  • Guillarmou, C.; Guillope, L. The Determinant of the Dirichlet-to-Neumann Map for Surfaces with Boundary, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnm099
  • Pollicott, Mark Maximal Lyapunov exponents for random matrix products, Inventiones mathematicae, Volume 181 (2010) no. 1, p. 209 | DOI:10.1007/s00222-010-0246-y
  • Gon, Yasuro; Park, Jinsung The zeta functions of Ruelle and Selberg for hyperbolic manifolds with cusps, Mathematische Annalen, Volume 346 (2010) no. 3, p. 719 | DOI:10.1007/s00208-009-0408-7
  • Bandtlow, Oscar F.; Jenkinson, Oliver Explicit eigenvalue estimates for transfer operators acting on spaces of holomorphic functions, Advances in Mathematics, Volume 218 (2008) no. 3, p. 902 | DOI:10.1016/j.aim.2008.02.005
  • Bismut, Jean‐Michel Loop Spaces and the hypoelliptic Laplacian, Communications on Pure and Applied Mathematics, Volume 61 (2008) no. 4, p. 559 | DOI:10.1002/cpa.20190
  • Bandtlow, Oscar F.; Jenkinson, Oliver Explicit A Priori Bounds on Transfer Operator Eigenvalues, Communications in Mathematical Physics, Volume 276 (2007) no. 3, p. 901 | DOI:10.1007/s00220-007-0355-7
  • Baladi, V. Regularization for Dynamical ζ-Functions, Encyclopedia of Mathematical Physics (2006), p. 386 | DOI:10.1016/b0-12-512666-2/00091-2
  • Pollicott, Mark Dynamical Zeta Functions and Closed Orbits for Geodesic and Hyperbolic Flows, Frontiers in Number Theory, Physics, and Geometry I (2006), p. 379 | DOI:10.1007/978-3-540-31347-2_11
  • Jenkinson, Oliver; Pollicott, Mark Orthonormal expansions of invariant densities for expanding maps, Advances in Mathematics, Volume 192 (2005) no. 1, p. 1 | DOI:10.1016/j.aim.2003.09.011
  • Fried, David Reduction theory over quadratic imaginary fields, Journal of Number Theory, Volume 110 (2005) no. 1, p. 44 | DOI:10.1016/j.jnt.2004.08.001
  • Bismut, Jean-Michel The hypoelliptic Laplacian on the cotangent bundle, Journal of the American Mathematical Society, Volume 18 (2005) no. 2, p. 379 | DOI:10.1090/s0894-0347-05-00479-0
  • Guillopé, Laurent; Lin, Kevin K.; Zworski, Maciej The Selberg Zeta Function for Convex Co-Compact Schottky Groups, Communications in Mathematical Physics, Volume 245 (2004) no. 1, p. 149 | DOI:10.1007/s00220-003-1007-1
  • Strain, John; Zworski, Maciej Growth of the zeta function for a quadratic map and the dimension of the Julia set, Nonlinearity, Volume 17 (2004) no. 5, p. 1607 | DOI:10.1088/0951-7715/17/5/003
  • HASHIMOTO, Yasufumi THE EULER-SELBERG CONSTANTS FOR NON-UNIFORM LATTICES OF RANK ONE SYMMETRIC SPACES, Kyushu Journal of Mathematics, Volume 57 (2003) no. 2, p. 347 | DOI:10.2206/kyushujm.57.347
  • Pollicott, Mark Chapter 5 Periodic orbits and zeta functions, Volume 1 (2002), p. 409 | DOI:10.1016/s1874-575x(02)80007-8
  • Patterson, S. J.; Perry, Peter A. The divisor of Selberg's zeta function for Kleinian groups, Duke Mathematical Journal, Volume 106 (2001) no. 2 | DOI:10.1215/s0012-7094-01-10624-8
  • Pollicott, Mark; Yuri, Michiko Zeta functions for certain multi-dimensional non-hyperbolic maps, Nonlinearity, Volume 14 (2001) no. 5, p. 1265 | DOI:10.1088/0951-7715/14/5/317
  • Deninger, Christopher On Dynamical Systems and Their Possible Significance for Arithmetic Geometry, Regulators in Analysis, Geometry and Number Theory (2000), p. 29 | DOI:10.1007/978-1-4612-1314-7_3
  • Rugh, Hans Henrik Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems, Ergodic Theory and Dynamical Systems, Volume 16 (1996) no. 4, p. 805 | DOI:10.1017/s0143385700009111
  • Juhl, Andreas Secondary invariants and the singularity of the Ruelle zeta-function in the central critical point, Bulletin of the American Mathematical Society, Volume 32 (1995) no. 1, p. 80 | DOI:10.1090/s0273-0979-1995-00570-7
  • Laederich, Stephane Analytic Torsion, Flows and Foliations, Hamiltonian Dynamical Systems, Volume 63 (1995), p. 181 | DOI:10.1007/978-1-4613-8448-9_13
  • Baladi, Viviane Dynamical Zeta Functions, Real and Complex Dynamical Systems (1995), p. 1 | DOI:10.1007/978-94-015-8439-5_1
  • Bunke, Ulrich; Olbrich, Martin; Juhl, Andreas The wave kernel for the Laplacian on the classical locally symmetric spaces of rank one, theta functions, trace formulas and the Selberg zeta function, Annals of Global Analysis and Geometry, Volume 12 (1994) no. 1, p. 357 | DOI:10.1007/bf02108307
  • Cvitanović, Predrag; Rosenqvist, Per E.; Vattay, Gábor; Rugh, Hans Henrik A Fredholm determinant for semiclassical quantization, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 3 (1993) no. 4, p. 619 | DOI:10.1063/1.165992
  • Bogomolny, E.B.; Carioli, M. Quantum maps from transfer operators, Physica D: Nonlinear Phenomena, Volume 67 (1993) no. 1-3, p. 88 | DOI:10.1016/0167-2789(93)90199-b
  • Hurt, Norman E. Zeta Functions and Periodic Orbit Theory: A Review, Results in Mathematics, Volume 23 (1993) no. 1-2, p. 55 | DOI:10.1007/bf03323131
  • Laederich, Stephane ¯ -Torsion, foliations and holomorphic vector fields, Communications in Mathematical Physics, Volume 145 (1992) no. 3, p. 447 | DOI:10.1007/bf02099393
  • Williams, Floyd L. A factorization of the selberg zeta function attached to a rank 1 space form, Manuscripta Mathematica, Volume 77 (1992) no. 1, p. 17 | DOI:10.1007/bf02567041
  • Williams, Floyd L. Some Zeta Functions Attached to Γ/K, New Developments in Lie Theory and Their Applications, Volume 105 (1992), p. 163 | DOI:10.1007/978-1-4612-2978-0_10
  • Kurokawa, Nobushige Gamma factors and Plancherel measures, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 68 (1992) no. 9 | DOI:10.3792/pjaa.68.256
  • Perry, Peter A. The Selberg zeta function and scattering poles for Kleinian groups, Bulletin of the American Mathematical Society, Volume 24 (1991) no. 2, p. 327 | DOI:10.1090/s0273-0979-1991-16024-6
  • Mayer, Dieter H. The thermodynamic formalism approach to Selberg’s zeta function for 𝑃𝑆𝐿(2,𝐙), Bulletin of the American Mathematical Society, Volume 25 (1991) no. 1, p. 55 | DOI:10.1090/s0273-0979-1991-16023-4
  • Wakayama, Masato A note on the Selberg zeta function for compact quotients of hyperbolic spaces, Hiroshima Mathematical Journal, Volume 21 (1991) no. 3 | DOI:10.32917/hmj/1206128720
  • Cvitanovic, P; Eckhardt, B Periodic orbit expansions for classical smooth flows, Journal of Physics A: Mathematical and General, Volume 24 (1991) no. 5, p. L237 | DOI:10.1088/0305-4470/24/5/005
  • Pollicott, Mark A note on the Artuso-Aurell-Cvitanovic approach to the Feigenbaum tangent operator, Journal of Statistical Physics, Volume 62 (1991) no. 1-2, p. 257 | DOI:10.1007/bf01020869
  • Cvitanović, Predrag Periodic orbits as the skeleton of classical and quantum chaos, Physica D: Nonlinear Phenomena, Volume 51 (1991) no. 1-3, p. 138 | DOI:10.1016/0167-2789(91)90227-z
  • Koyama, Shin-ya Selberg zeta functions and Ruelle operators for function fields, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 67 (1991) no. 8 | DOI:10.3792/pjaa.67.255
  • PATTERSON, S.J. The Selberg Zeta-Function of a Kleinian Group, Number Theory, Trace Formulas and Discrete Groups (1989), p. 409 | DOI:10.1016/b978-0-12-067570-8.50031-7
  • Fried, David Torsion and closed geodesics on complex hyperbolic manifolds, Inventiones Mathematicae, Volume 91 (1988) no. 1, p. 31 | DOI:10.1007/bf01404911

Cité par 70 documents. Sources : Crossref