@article{ASENS_1992_4_25_1_1_0, author = {Joseph, Anthony}, title = {Annihilators and associated varieties of unitary highest weight modules}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1--45}, publisher = {Elsevier}, volume = {Ser. 4, 25}, number = {1}, year = {1992}, doi = {10.24033/asens.1642}, zbl = {0752.17007}, mrnumber = {1152612}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.1642/} }
TY - JOUR AU - Joseph, Anthony TI - Annihilators and associated varieties of unitary highest weight modules JO - Annales scientifiques de l'École Normale Supérieure PY - 1992 SP - 1 EP - 45 VL - 25 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.24033/asens.1642/ DO - 10.24033/asens.1642 LA - en ID - ASENS_1992_4_25_1_1_0 ER -
%0 Journal Article %A Joseph, Anthony %T Annihilators and associated varieties of unitary highest weight modules %J Annales scientifiques de l'École Normale Supérieure %D 1992 %P 1-45 %V 25 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.24033/asens.1642/ %R 10.24033/asens.1642 %G en %F ASENS_1992_4_25_1_1_0
Joseph, Anthony. Annihilators and associated varieties of unitary highest weight modules. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 25 (1992) no. 1, pp. 1-45. doi : 10.24033/asens.1642. http://archive.numdam.org/articles/10.24033/asens.1642/
[1] The Unitary Dual for Complex Classical Lie Groups (Inv. Math., Vol. 96, 1989, pp. 103-176). | MR | Zbl
,[2] Primitive Ideals and Orbital Integrals in Complex Classical Groups (Math. Ann., Vol. 259, 1982, pp. 153-199). | MR | Zbl
and ,[3] Differential Operators on Homogeneous Spaces III (Invent. Math., Vol. 80, 1985, pp. 1-68). | MR | Zbl
and ,[4] Über die Gelfand-Kirillov Dimension (Math. Ann., Vol. 220, 1976, pp. 1-24). | MR | Zbl
and ,[5] Groupes et Algèbres de Lie, Chaps. IV-VI, Act. Sci. Ind., 1337, Hermann, Paris, 1968. | MR
,[6] Differential Operators and Highest Weight Representations, preprint, 1990.
, and ,[7] Algèbres enveloppantes (Cahiers scientifiques, No. 37, Gauthier-Villars, Paris, 1974). | MR | Zbl
,[8] Analogues of Kostant's u Cohomology Formulas for Unitary Highest Weight Modules (J. reine angew. Math., Vol. 392, 1988, pp. 27-36). | MR | Zbl
,[9] A Classification of Unitary Highest Weight Modules, in Representation Theory of Reductive Groups, Ed., Boston, 1983, pp. 97-143. | MR | Zbl
, and ,[10] An Intrinsic Analysis of Unitarizable Highest Weight Modules (Math. Ann., Vol. 288, 1990, pp. 571-594). | MR | Zbl
and ,[11] Zur eben Oktavengeometrie (Indag. Math., Vol. 15, 1953, pp. 195-200). | Zbl
,[12] Singular Holomorphic Representations and Singular Modular Forms (Math. Ann., Vol. 259, 1982, pp. 227-244). | MR | Zbl
and ,[13] On Singular Holomorphic Representations (Invent. Math., Vol. 62, 1980, pp. 67-78). | MR | Zbl
,[14] Hermitian Symmetric Spaces and Their Unitary Highest Weight Modules (J. Funct. Anal., Vol. 52, 1983, pp. 385-412). | MR | Zbl
,[15] Restrictions and Expansions of Holomorphic Representations (J. Funct. Anal., Vol. 34, 1979, pp. 29-53). | MR | Zbl
and ,[16] Einhüllenden Algebren halbeinfacher Lie-Algebren (Ergebnisse der Mathematik, Springer-Verlag, Berlin, 1983). | Zbl
,[17] The Minimal Orbit in a Simple Lie Algebra and Its Associated Maximal Ideal (Ann. Ec. Norm. Sup., Vol. 9, 1976, pp. 1-30). | Numdam | MR | Zbl
,[18] A Preparation Theorem for the Prime Spectrum of a Semisimple Lie Algebra (J. Algebra, Vol. 48, 1977, pp. 241-289). | MR | Zbl
,[19] Gelfand-Kirillov Dimension for the Annihilators of Simple Quotients of Verma Modules (J. Lond. Math. Soc., Vol. 18, 1978, pp. 50-60). | MR | Zbl
,[20] Kostant's Problem, Goldie Rank and the Gelfand-Kirillov Conjecture (Invent. Math., Vol. 56, 1980, pp. 191-213). | MR | Zbl
,[21] Goldie Rank in the Enveloping Algebra of a Semisimple Lie Algebra I-III (J. Algebra, Vol. 65, 1980, pp. 269-283 and 284-306, Vol. 73, 1981, pp. 295-326). | Zbl
,[22] A Characteristic Variety for the Primitive Spectrum of a Semisimple Lie Algebra, in Non-Commutative Harmonic Analysis (Lectures Notes, No. 587, Berlin, 1977, pp. 102-118). | MR | Zbl
,[23] On the Variety of a Highest Weight Module (J. Algebra, Vol. 88, 1984, pp. 238-278). | MR | Zbl
,[24] A Surjectivity Theorem for rigid Highest Weight Modules (Invent. Math., Vol. 92, 1988, pp. 567-596). | MR | Zbl
,[25] The Minimal Nilpotent Orbit, the Joseph Ideal and Differential Operators (J. Algebra, Vol. 116, 1988, pp. 480-501). | MR | Zbl
, and ,[26] Rings of Differential Operators on Classical Rings of Invariants (Mem. Am. Math. Soc., Vol. 412, 1989). | MR | Zbl
and ,[27] Non-Commutative Noetherian Rings, Wiley-Interscience, New York, 1987. | MR | Zbl
and ,[28] Quantization of Nilpotent Orbit Covers in Complex Classical Groups, preprint, 1989.
,[29] The Orbit Method and Primitive Ideals for Semisimple Lie Algebras, (Canad. Math. Soc. Conference Proceedings, Vol. 5, 1986, pp. 281-316). | MR | Zbl
,Cited by Sources: