[Sur les réalisations de de Rham et
Dans cet article, nous donnons une description explicite des réalisations de de Rham et
In this paper, we give an explicit description of the de Rham and
Keywords: elliptic curves, complex multiplication, elliptic polylogarithms,
Mot clés : courbes elliptiques, multiplication complexe, polylogarithmes elliptiques, fonctions
@article{ASENS_2010_4_43_2_185_0, author = {Bannai, Kenichi and Kobayashi, Shinichi and Tsuji, Takeshi}, title = {On the de {Rham} and $p$-adic realizations of the elliptic polylogarithm for {CM} elliptic curves}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {185--234}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 43}, number = {2}, year = {2010}, doi = {10.24033/asens.2119}, mrnumber = {2662664}, zbl = {1197.11073}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2119/} }
TY - JOUR AU - Bannai, Kenichi AU - Kobayashi, Shinichi AU - Tsuji, Takeshi TI - On the de Rham and $p$-adic realizations of the elliptic polylogarithm for CM elliptic curves JO - Annales scientifiques de l'École Normale Supérieure PY - 2010 SP - 185 EP - 234 VL - 43 IS - 2 PB - Société mathématique de France UR - https://www.numdam.org/articles/10.24033/asens.2119/ DO - 10.24033/asens.2119 LA - en ID - ASENS_2010_4_43_2_185_0 ER -
%0 Journal Article %A Bannai, Kenichi %A Kobayashi, Shinichi %A Tsuji, Takeshi %T On the de Rham and $p$-adic realizations of the elliptic polylogarithm for CM elliptic curves %J Annales scientifiques de l'École Normale Supérieure %D 2010 %P 185-234 %V 43 %N 2 %I Société mathématique de France %U https://www.numdam.org/articles/10.24033/asens.2119/ %R 10.24033/asens.2119 %G en %F ASENS_2010_4_43_2_185_0
Bannai, Kenichi; Kobayashi, Shinichi; Tsuji, Takeshi. On the de Rham and $p$-adic realizations of the elliptic polylogarithm for CM elliptic curves. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 2, pp. 185-234. doi : 10.24033/asens.2119. https://www.numdam.org/articles/10.24033/asens.2119/
[1] Weierstrass elliptic and related functions, Ch. 18, in Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications Inc., 1992, p. 627-671. | MR | Zbl
& (éds.),[2] Algebraic versus rigid cohomology with logarithmic coefficients, in Barsotti Symposium in Algebraic Geometry (Abano Terme, 1991), Perspect. Math. 15, Academic Press, 1994, 11-50. | MR | Zbl
& ,
[3] Rigid syntomic cohomology and
[4] On the
[5]
[6] Algebraic theta functions and
[7] The elliptic polylogarithm, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., 1994, 123-190. | MR | Zbl
& ,
[8] Géométrie rigide et cohomologie des variétés algébriques de caractéristique
[9] Cohomologie rigide et cohomologie rigide à support propre, première partie, preprint IRMAR 96-03, 1996.
,[10] Finitude et pureté cohomologique en cohomologie rigide, Invent. Math. 128 (1997), 329-377. | MR | Zbl
,
[11] A new construction of
[12]
[13] Fonctions
[14]
[15]
[16] Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, in Journées de Géométrie Algébrique de Rennes. (Rennes, 1978), Vol. III, Astérisque 65, Soc. Math. France, 1979, 3-80. | Numdam | Zbl
,
[17] Degeneration of
[18] Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math. 3 (1998), 27-133; correction: idem, 297-299. | Zbl
& ,
[19]
[20] Elliptic polylogarithms: an analytic theory, Compositio Math. 106 (1997), 267-282. | Zbl
,[21] Towards multiple elliptic polylogarithm, preprint arXiv:math/0703237.
& ,
[22]
[23] Formal cohomology. I, Ann. of Math. 88 (1968), 181-217. | Zbl
& ,
[24] Fonctions
[25]
[26] Iwasawa theory of elliptic curves with complex multiplication, Perspectives in Mathematics 3, Academic Press Inc., 1987. | MR | Zbl
,[27] Crystalline fundamental groups. II. Log convergent cohomology and rigid cohomology, J. Math. Sci. Univ. Tokyo 9 (2002), 1-163. | MR | Zbl
,
[28]
[29] On base change theorem and coherence in rigid cohomology, Doc. Math. extra vol. (2003), 891-918. | MR | Zbl
,[30] Elliptic functions according to Eisenstein and Kronecker, Ergebn. Math. Grenzg. 88, Springer, 1976. | MR | Zbl
,[31] Weierstrass sigma function, http://mathworld.wolfram.com/WeierstrassSigmaFunction.html.
,[32] Realizations of polylogarithms, Lecture Notes in Math. 1650, Springer, 1997. | MR | Zbl
,
[33] On
- The Hodge realization of the polylogarithm and the Shintani generating class for totally real fields, Advances in Mathematics, Volume 448 (2024), p. 109716 | DOI:10.1016/j.aim.2024.109716
- p-adic polylogarithms and p-adic Hecke L-functions for totally real fields, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2022 (2022) no. 791, p. 53 | DOI:10.1515/crelle-2022-0040
- The algebraic de Rham realization of the elliptic polylogarithm via the Poincaré bundle, Algebra Number Theory, Volume 14 (2020) no. 3, p. 545 | DOI:10.2140/ant.2020.14.545
- The Hodge realization of the polylogarithm on the product of multiplicative groups, Mathematische Zeitschrift, Volume 296 (2020) no. 3-4, p. 1787 | DOI:10.1007/s00209-020-02483-y
- EISENSTEIN–KRONECKER SERIES VIA THE POINCARÉ BUNDLE, Forum of Mathematics, Sigma, Volume 7 (2019) | DOI:10.1017/fms.2019.29
- p-adic Eisenstein-Kronecker series for CM elliptic curves and the Kronecker limit formulas, Nagoya Mathematical Journal, Volume 219 (2015), p. 269 | DOI:10.1215/00277630-2891995
- p -adic Eisenstein–Kronecker series and non-critical values of p -adic Hecke L -function of an imaginary quadratic field when the conductor is divisible by p, Journal of Number Theory, Volume 135 (2014), p. 301 | DOI:10.1016/j.jnt.2013.07.019
Cité par 7 documents. Sources : Crossref