Fano manifolds of degree ten and EPW sextics
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 44 (2011) no. 3, pp. 393-426.

O’Grady showed that certain special sextics in 5 called EPW sextics admit smooth double covers with a holomorphic symplectic structure. We propose another perspective on these symplectic manifolds, by showing that they can be constructed from the Hilbert schemes of conics on Fano fourfolds of degree ten. As applications, we construct families of Lagrangian surfaces in these symplectic fourfolds, and related integrable systems whose fibers are intermediate Jacobians.

O’Grady a démontré que certaines sextiques spéciales dans 5 , les sextiques EPW, admettent pour revêtements doubles des variétés symplectiques holomorphes lisses. Nous proposons une nouvelle approche de ces variétés symplectiques, en montrant qu’elles se construisent à partir des schémas de Hilbert de coniques sur des variétés de Fano de dimension quatre et de degré dix. En guise d’application, nous construisons des familles de surfaces lagrangiennes dans ces variétés symplectiques, puis des systèmes intégrables dont les fibres sont des jacobiennes intermédiaires.

DOI: 10.24033/asens.2146
Classification: 14C05,  14J35,  14J45,  14M15,  37K20,  53C26
Keywords: holomorphic symplectic manifold, Fano manifold, grassmannian, Hilbert scheme, conic, double cover, lagrangian surface, integrable system
@article{ASENS_2011_4_44_3_393_0,
     author = {Iliev, Atanas and Manivel, Laurent},
     title = {Fano manifolds of degree ten and {EPW} sextics},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {393--426},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 44},
     number = {3},
     year = {2011},
     doi = {10.24033/asens.2146},
     zbl = {1258.14050},
     mrnumber = {2839455},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2146/}
}
TY  - JOUR
AU  - Iliev, Atanas
AU  - Manivel, Laurent
TI  - Fano manifolds of degree ten and EPW sextics
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2011
DA  - 2011///
SP  - 393
EP  - 426
VL  - Ser. 4, 44
IS  - 3
PB  - Société mathématique de France
UR  - http://archive.numdam.org/articles/10.24033/asens.2146/
UR  - https://zbmath.org/?q=an%3A1258.14050
UR  - https://www.ams.org/mathscinet-getitem?mr=2839455
UR  - https://doi.org/10.24033/asens.2146
DO  - 10.24033/asens.2146
LA  - en
ID  - ASENS_2011_4_44_3_393_0
ER  - 
%0 Journal Article
%A Iliev, Atanas
%A Manivel, Laurent
%T Fano manifolds of degree ten and EPW sextics
%J Annales scientifiques de l'École Normale Supérieure
%D 2011
%P 393-426
%V Ser. 4, 44
%N 3
%I Société mathématique de France
%U https://doi.org/10.24033/asens.2146
%R 10.24033/asens.2146
%G en
%F ASENS_2011_4_44_3_393_0
Iliev, Atanas; Manivel, Laurent. Fano manifolds of degree ten and EPW sextics. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 44 (2011) no. 3, pp. 393-426. doi : 10.24033/asens.2146. http://archive.numdam.org/articles/10.24033/asens.2146/

[1] M. Andreatta & J. A. Wiśniewski, A note on nonvanishing and applications, Duke Math. J. 72 (1993), 739-755. | MR | Zbl

[2] E. Arbarello, M. Cornalba, P. A. Griffiths & J. Harris, Geometry of algebraic curves. Vol. I, Grund. Math. Wiss. 267, Springer, 1985. | MR | Zbl

[3] A. Beauville, Fano threefolds and K3 surfaces, in The Fano Conference, Univ. Torino, Turin, 2004, 175-184. | MR | Zbl

[4] O. Debarre, A. Iliev & L. Manivel, On the period map for prime Fano threefolds of degree ten, preprint arXiv:0812.3670, to appear in J. Algebraic Geom. | MR | Zbl

[5] O. Debarre & C. Voisin, Hyper-Kähler fourfolds and Grassmann geometry, J. reine angew. Math. 649 (2010), 63-87. | MR | Zbl

[6] R. Donagi & E. Markman, Spectral covers, algebraically completely integrable, Hamiltonian systems, and moduli of bundles, in Integrable systems and quantum groups (Montecatini Terme, 1993), Lecture Notes in Math. 1620, Springer, 1996, 1-119. | MR | Zbl

[7] D. Eisenbud, S. Popescu & C. Walter, Enriques surfaces and other non-Pfaffian subcanonical subschemes of codimension 3, Comm. Algebra 28 (2000), 5629-5653. | MR | Zbl

[8] N. P. Gushelʼ, Fano varieties of genus 6, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), 1159-1174; English translation: Math. USSR Izv. 21 (1983), 445-459. | Zbl

[9] A. Iliev & L. Manivel, Prime Fano threefolds and integrable systems, Math. Ann. 339 (2007), 937-955. | MR | Zbl

[10] A. Iliev & L. Manivel, Cubic hypersurfaces and integrable systems, Amer. J. Math. 130 (2008), 1445-1475. | MR | Zbl

[11] A. Kuznetsov & D. Markushevich, Symplectic structures on moduli spaces of sheaves via the Atiyah class, J. Geom. Phys. 59 (2009), 843-860. | MR | Zbl

[12] D. Logachev, Fano threefolds of genus 6, preprint arXiv:math/0407147. | MR | Zbl

[13] D. Markushevich, An integrable system of K3-Fano flags, Math. Ann. 342 (2008), 145-156. | MR | Zbl

[14] D. Markushevich, Integrable systems from intermediate Jacobians of fivefolds, preprint, 2009.

[15] S. Mukai, Curves, K3 surfaces and Fano 3-folds of genus 10, in Algebraic geometry and commutative algebra, Vol. I, Kinokuniya, 1988, 357-377. | MR | Zbl

[16] S. Mukai, Moduli of vector bundles on K3 surfaces and symplectic manifolds, Sūgaku Expositions 1 (1988), 139-174. | MR | Zbl

[17] K. G. O'Grady, Involutions and linear systems on holomorphic symplectic manifolds, Geom. Funct. Anal. 15 (2005), 1223-1274. | Zbl

[18] K. G. O'Grady, Irreducible symplectic 4-folds and Eisenbud-Popescu-Walter sextics, Duke Math. J. 134 (2006), 99-137. | Zbl

[19] K. G. O'Grady, Dual double EPW-sextics and their periods, Pure Appl. Math. Q. 4 (2008), 427-468. | MR | Zbl

[20] K. G. O'Grady, Irreducible symplectic 4-folds numerically equivalent to (K3) [2] , Commun. Contemp. Math. 10 (2008), 553-608. | MR | Zbl

[21] E. Sernesi, Deformations of algebraic schemes, Grund. Math. Wiss. 334, Springer, 2006. | MR | Zbl

Cited by Sources: