Base change for Bernstein centers of depth zero principal series blocks
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 45 (2012) no. 5, pp. 681-718.

Let G be an unramified group over a p-adic field. This article introduces a base change homomorphism for Bernstein centers of depth-zero principal series blocks for G and proves the corresponding base change fundamental lemma. This result is used in the approach to Shimura varieties with Γ 1 (p)-level structure initiated by M. Rapoport and the author in [15].

Soit G un groupe non-ramifié sur un corps p-adique. On définit un homomorphisme de changement de base pour les centres de Bernstein des blocs des séries principales de niveau zéro, et on démontre le lemme fondamental correspondant. Ce résultat est utilisé dans le calcul du facteur local en p des variétés de Shimura à structure de niveau Γ 1 (p) dans l’article avec M. Rapoport [15] publié en tandem avec cet article dans ce même journal.

DOI: 10.24033/asens.2176
Classification: 11F72, 22E50
Keywords: orbital integrals on $p$-adic groups, Arthur-Selberg trace formula
Mot clés : intégrales orbitales sur des groupes $p$-adiques, formule de traces d’Arthur-Selberg
@article{ASENS_2012_4_45_5_681_0,
     author = {Haines, Thomas J.},
     title = {Base change for {Bernstein} centers of depth zero principal series blocks},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {681--718},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 45},
     number = {5},
     year = {2012},
     doi = {10.24033/asens.2176},
     mrnumber = {3053007},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2176/}
}
TY  - JOUR
AU  - Haines, Thomas J.
TI  - Base change for Bernstein centers of depth zero principal series blocks
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2012
SP  - 681
EP  - 718
VL  - 45
IS  - 5
PB  - Société mathématique de France
UR  - http://archive.numdam.org/articles/10.24033/asens.2176/
DO  - 10.24033/asens.2176
LA  - en
ID  - ASENS_2012_4_45_5_681_0
ER  - 
%0 Journal Article
%A Haines, Thomas J.
%T Base change for Bernstein centers of depth zero principal series blocks
%J Annales scientifiques de l'École Normale Supérieure
%D 2012
%P 681-718
%V 45
%N 5
%I Société mathématique de France
%U http://archive.numdam.org/articles/10.24033/asens.2176/
%R 10.24033/asens.2176
%G en
%F ASENS_2012_4_45_5_681_0
Haines, Thomas J. Base change for Bernstein centers of depth zero principal series blocks. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 45 (2012) no. 5, pp. 681-718. doi : 10.24033/asens.2176. http://archive.numdam.org/articles/10.24033/asens.2176/

[1] J. Arthur & L. Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Math. Studies 120, Princeton Univ. Press, 1989. | MR | Zbl

[2] J. N. Bernstein, Le « centre » de Bernstein, in Représentations des groupes réductifs sur un corps local (P. Deligne, éd.), Travaux en Cours, Hermann, 1984, 1-32. | MR | Zbl

[3] F. Bruhat & J. Tits, Groupes réductifs sur un corps local. II, Publ. Math. I.H.É.S. 60 (1984), 5-184. | Numdam | Zbl

[4] C. J. Bushnell & P. C. Kutzko, Smooth representations of reductive p-adic groups: structure theory via types, Proc. London Math. Soc. 77 (1998), 582-634. | MR | Zbl

[5] W. Casselman, Characters and Jacquet modules, Math. Ann. 230 (1977), 101-105. | MR | Zbl

[6] W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, unpublished notes, 1995.

[7] L. Clozel, The fundamental lemma for stable base change, Duke Math. J. 61 (1990), 255-302. | MR | Zbl

[8] P. Deligne, Le support du caractère d'une représentation supercuspidale, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), A155-A157. | MR | Zbl

[9] D. J. Goldstein, Hecke algebra isomorphisms for tamely ramified characters, Thèse, The University of Chicago, 1990. | MR

[10] T. J. Haines, Introduction to Shimura varieties with bad reduction of parahoric type, in Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc. 4, Amer. Math. Soc., 2005, 583-642. | MR | Zbl

[11] T. J. Haines, The base change fundamental lemma for central elements in parahoric Hecke algebras, Duke Math. J. 149 (2009), 569-643. | MR | Zbl

[12] T. J. Haines, On Hecke algebra isomorphisms and types for depth-zero principal series, expository note available at http://www.math.umd.edu/~tjh, 2009.

[13] T. J. Haines & M. Rapoport, On parahoric subgroups, Adv. Math. 219 (2008), 188-198, appendix to [29]. | MR

[14] T. J. Haines & M. Rapoport, Shimura varieties with Γ 1 (p)-level via Hecke algebra isomorphisms: the Drinfeld case, Ann. Sci. École Norm. Sup. 45 (2012), 719-785. | EuDML | Numdam | MR | Zbl

[15] T. C. Hales, On the fundamental lemma for standard endoscopy: reduction to unit elements, Canad. J. Math. 47 (1995), 974-994. | MR | Zbl

[16] D. Keys, Reducibility of unramified unitary principal series representations of p-adic groups and class-1 representations, Math. Ann. 260 (1982), 397-402. | EuDML | MR | Zbl

[17] R. E. Kottwitz, Rational conjugacy classes in reductive groups, Duke Math. J. 49 (1982), 785-806. | MR | Zbl

[18] R. E. Kottwitz, Base change for unit elements of Hecke algebras, Compositio Math. 60 (1986), 237-250. | EuDML | Numdam | MR

[19] R. E. Kottwitz, Tamagawa numbers, Ann. of Math. 127 (1988), 629-646. | MR | Zbl

[20] R. E. Kottwitz, Shimura varieties and λ-adic representations, in Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math. 10, Academic Press, 1990, 161-209. | MR | Zbl

[21] R. E. Kottwitz, On the λ-adic representations associated to some simple Shimura varieties, Invent. Math. 108 (1992), 653-665. | EuDML | MR | Zbl

[22] R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), 373-444. | MR | Zbl

[23] R. E. Kottwitz, Isocrystals with additional structure. II, Compositio Math. 109 (1997), 255-339. | MR | Zbl

[24] J.-P. Labesse, Fonctions élémentaires et lemme fondamental pour le changement de base stable, Duke Math. J. 61 (1990), 519-530. | MR | Zbl

[25] J.-P. Labesse, Noninvariant base change identities, Mém. Soc. Math. France (N.S.) 61 (1995). | EuDML | Numdam | MR | Zbl

[26] J.-P. Labesse, Cohomologie, stabilisation et changement de base, Astérisque 257 (1999). | MR | Zbl

[27] R. P. Langlands, Base change for GL (2), Annals of Math. Studies 96, Princeton Univ. Press, 1980. | MR | Zbl

[28] L. Morris, Tamely ramified intertwining algebras, Invent. Math. 114 (1993), 1-54. | EuDML | MR | Zbl

[29] G. Pappas & M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219 (2008), 118-198. | MR | Zbl

[30] A. Roche, Types and Hecke algebras for principal series representations of split reductive p-adic groups, Ann. Sci. École Norm. Sup. 31 (1998), 361-413. | EuDML | Numdam | MR | Zbl

[31] J. D. Rogawski, Trace Paley-Wiener theorem in the twisted case, Trans. Amer. Math. Soc. 309 (1988), 215-229. | MR | Zbl

[32] J-P. Serre, Local fields, Graduate Texts in Math. 67, Springer, 1979. | MR | Zbl

Cited by Sources: