Le système d'Euler-Maxwell décrit l'évolution d'un plasma quand les collisions sont suffisamment importantes pour que chaque espèce soit dans un état d'équilibre hydrodynamique. On prouve dans cet article l'existence globale de petites solutions à ce système, posé en dimension 3 d'espace, en combinant la méthode des résonances en espace-temps (pour obtenir la décroissance des solutions) et des estimations d'énergie (pour contrôler la régularité des solutions). La décroissance non intégrable des solutions impose de combiner étroitement ces deux arguments en examinant le rôle des résonances au sein des estimations d'énergie.
The Euler-Maxwell system describes the evolution of a plasma when the collisions are important enough that each species is in a hydrodynamic equilibrium. In this paper we prove global existence of small solutions to this system set in the whole three-dimensional space, by combining the space-time resonance method (to obtain decay) and energy estimates (to control high frequencies). The non-integrable decay of the solutions makes it necessary to examine resonances within the energy estimate argument.
DOI : 10.24033/asens.2219
Keywords: Euler-Maxwell equations, global existence, space-time resonances.
Mot clés : Équations d'Euler-Maxwell, existence globale, résonances en espace-temps.
@article{ASENS_2014__47_3_469_0, author = {Germain, Pierre and Masmoudi, Nader}, title = {Global existence for the {Euler-Maxwell} system}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {469--503}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {3}, year = {2014}, doi = {10.24033/asens.2219}, mrnumber = {3239096}, zbl = {1311.35195}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2219/} }
TY - JOUR AU - Germain, Pierre AU - Masmoudi, Nader TI - Global existence for the Euler-Maxwell system JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 469 EP - 503 VL - 47 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2219/ DO - 10.24033/asens.2219 LA - en ID - ASENS_2014__47_3_469_0 ER -
%0 Journal Article %A Germain, Pierre %A Masmoudi, Nader %T Global existence for the Euler-Maxwell system %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 469-503 %V 47 %N 3 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2219/ %R 10.24033/asens.2219 %G en %F ASENS_2014__47_3_469_0
Germain, Pierre; Masmoudi, Nader. Global existence for the Euler-Maxwell system. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 3, pp. 469-503. doi : 10.24033/asens.2219. https://www.numdam.org/articles/10.24033/asens.2219/
A model hierarchy for ionospheric plasma modeling, Math. Models Methods Appl. Sci., Volume 14 (2004), pp. 393-415 (ISSN: 0218-2025) | DOI | MR | Zbl
, Cambridge Univ. Press, 2006
Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., Volume 14 (1981), pp. 209-246 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
, Cambridge Univ. Press, Cambridge, 2003, 532 pages (ISBN: 0-521-45290-2; 0-521-45912-5) |, EMS Monographs in Math., European Mathematical Society (EMS), Zürich, 2007, 992 pages (ISBN: 978-3-03719-031-9) | DOI | MR | Zbl
Compressible Euler-Maxwell equations, Transport Theory Statist. Phys. (Proceedings of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI, 1998)), Volume 29 (2000), pp. 311-331 (ISSN: 0041-1450) | DOI | MR | Zbl
, Astérisque, 57, Soc. Math. France, Paris, 1978, 185 pages | Numdam | MR | Zbl
, Oxford Univ. Press, 1990
Global smooth flows for the compressible Euler-Maxwell system. The relaxation case, J. Hyperbolic Differ. Equ., Volume 8 (2011), pp. 375-413 (ISSN: 0219-8916) | DOI | MR | Zbl
Space-time resonances, Journées Equations aux Dérivées Partielles (2010) (exp. no 8) | DOI
Global existence for coupled Klein-Gordon equations with different speeds, Ann. Inst. Fourier (Grenoble), Volume 61 (2011), pp. 2463-2506 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Nonneutral global solutions for the electron Euler-Poisson system in three dimensions, SIAM J. Math. Anal., Volume 45 (2013), pp. 267-278 (ISSN: 0036-1410) | DOI | MR | Zbl
Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not., Volume 2009 (2009), pp. 414-432 (ISSN: 1073-7928) | DOI | MR | Zbl
Global solutions for the gravity water waves equation in dimension 3, C. R. Math. Acad. Sci. Paris, Volume 347 (2009), pp. 897-902 (ISSN: 1631-073X) | DOI | MR | Zbl
Global solutions for the gravity water waves equation in dimension 3, Ann. of Math., Volume 175 (2012), pp. 691-754 (ISSN: 0003-486X) | DOI | MR | Zbl
Global smooth ion dynamics in the Euler-Poisson system, Comm. Math. Phys., Volume 303 (2011), pp. 89-125 (ISSN: 0010-3616) | DOI | MR | Zbl
The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., Volume 155 (2004), pp. 81-161 (ISSN: 0020-9910) | DOI | MR | Zbl
, Nonlinear partial differential equations (Evanston, IL, 1998) (Contemp. Math.), Volume 238, Amer. Math. Soc., Providence, RI, 1999, pp. 151-161 | DOI | MR | Zbl
Smooth irrotational flows in the large to the Euler-Poisson system in
Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., Volume 43 (1985), pp. 399-442 (ISSN: 0246-0211) | Numdam | MR | Zbl
Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, Volume 4 (2011), pp. 405-460 (ISSN: 1948-206X) | DOI | MR | Zbl
Derivation of Ohm's law from the kinetic equations, SIAM J. Math. Anal., Volume 44 (2012), pp. 3649-3669 (ISSN: 0036-1410) | DOI | MR | Zbl
From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II, Arch. Ration. Mech. Anal., Volume 158 (2001) (ISSN: 0003-9527) | DOI | MR | Zbl
From the Boltzmann equation to an incompressible Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal., Volume 196 (2010), pp. 753-809 (ISSN: 0003-9527) | DOI | MR | Zbl
Global well posedness for the Maxwell-Navier-Stokes system in 2D, J. Math. Pures Appl., Volume 93 (2010), pp. 559-571 (ISSN: 0021-7824) | DOI | MR | Zbl
Sur les solutions à symétrie sphérique de l'équation d'Euler-Poisson pour l'évolution d'étoiles gazeuses, Japan J. Appl. Math., Volume 7 (1990), pp. 165-170 (ISSN: 0910-2043) | DOI | MR | Zbl
, Cambridge Studies in Advanced Math., 138, Cambridge Univ. Press, 2013 | Zbl
Sur la solution à support compact de l'équation d'Euler compressible, Japan J. Appl. Math., Volume 3 (1986), pp. 249-257 (ISSN: 0910-2043) | DOI | MR | Zbl
Nonexistence of global solutions to Euler-Poisson equations for repulsive forces, Japan J. Appl. Math., Volume 7 (1990), pp. 363-367 (ISSN: 0910-2043) | DOI | MR | Zbl
Blowup of smooth solutions for relativistic Euler equations, Comm. Math. Phys., Volume 262 (2006), pp. 729-755 (ISSN: 0010-3616) | DOI | MR | Zbl
Rigorous derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations, SIAM J. Math. Anal., Volume 40 (2008), pp. 540-565 (ISSN: 0036-1410) | DOI | MR | Zbl
Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys., Volume 101 (1985), pp. 475-485 http://projecteuclid.org/euclid.cmp/1104114244 (ISSN: 0010-3616) | DOI | MR | Zbl
WKB asymptotics for the Euler-Maxwell equations, Asymptot. Anal., Volume 42 (2005), pp. 211-250 (ISSN: 0921-7134) | MR | Zbl
Non-relativistic limit of two-fluid Euler-Maxwell equations arising from plasma physics, ZAMM Z. Angew. Math. Mech., Volume 89 (2009), pp. 981-994 (ISSN: 0044-2267) | DOI | MR | Zbl
Rigorous derivation of incompressible type Euler equations from non-isentropic Euler-Maxwell equations, Nonlinear Anal., Volume 73 (2010), pp. 3613-3625 (ISSN: 0362-546X) | DOI | MR | Zbl
- Global convergence rates in zero-relaxation limits for non-isentropic Euler-Maxwell equations, Journal of Differential Equations, Volume 414 (2025), p. 372 | DOI:10.1016/j.jde.2024.09.020
- A new characterization of the dissipation structure and the relaxation limit for the compressible Euler-Maxwell system, Journal of Functional Analysis, Volume 289 (2025) no. 2, p. 110918 | DOI:10.1016/j.jfa.2025.110918
- Long Time Decay and Asymptotics for the Complex mKdV Equation, SIAM Journal on Mathematical Analysis, Volume 57 (2025) no. 1, p. 825 | DOI:10.1137/22m1528495
- Nonlinear Landau Damping for the Vlasov–Poisson System in
: The Poisson Equilibrium, Annals of PDE, Volume 10 (2024) no. 1 | DOI:10.1007/s40818-023-00161-w - Existence and stability of almost finite energy weak solutions to the quantum Euler-Maxwell system, Journal de Mathématiques Pures et Appliquées, Volume 191 (2024), p. 103629 | DOI:10.1016/j.matpur.2024.103629
- Stability of the constant states in the augmented Born–Infeld system, Journal of Hyperbolic Differential Equations, Volume 21 (2024) no. 04, p. 845 | DOI:10.1142/s0219891624500139
- Global-in-time error estimates of non-relativistic limits for Euler–Maxwell system near non-constant equilibrium, Nonlinear Analysis: Real World Applications, Volume 80 (2024), p. 104163 | DOI:10.1016/j.nonrwa.2024.104163
- Hilbert expansion for Coulomb collisional kinetic models, Quarterly of Applied Mathematics, Volume 83 (2024) no. 2, p. 211 | DOI:10.1090/qam/1689
- Approximations of Euler-Maxwell systems by drift-diffusion equations through zero-relaxation limits near the non-constant equilibrium, Science China Mathematics (2024) | DOI:10.1007/s11425-023-2286-7
- The Euler–Poisswell/Darwin equation and the asymptotic hierarchy of the Euler–Maxwell equation, Asymptotic Analysis, Volume 135 (2023) no. 3-4, p. 525 | DOI:10.3233/asy-231864
- Global well-posedness for 3D Euler–Maxwell two-fluids system, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 9 | DOI:10.1007/s00526-023-02586-4
- On the stability of homogeneous equilibria in the Vlasov–Poisson system on R3, Classical and Quantum Gravity, Volume 40 (2023) no. 18, p. 185007 | DOI:10.1088/1361-6382/acebb0
- Long‐Time Instability of the Couette Flow in Low Gevrey Spaces, Communications on Pure and Applied Mathematics, Volume 76 (2023) no. 10, p. 2804 | DOI:10.1002/cpa.22092
- Global convergence in non-relativistic limits for Euler-Maxwell system near non-constant equilibrium, Journal of Differential Equations, Volume 377 (2023), p. 297 | DOI:10.1016/j.jde.2023.08.030
- Zero-Relaxation Limits of the Non-Isentropic Euler–Maxwell System for Well/Ill-Prepared Initial Data, Journal of Nonlinear Science, Volume 33 (2023) no. 5 | DOI:10.1007/s00332-023-09934-w
- Global Solution of the 3D Relativistic Vlasov–Poisson System for a Class of Large Data, Journal of Statistical Physics, Volume 190 (2023) no. 10 | DOI:10.1007/s10955-023-03178-4
- Compressible Euler–Maxwell limit for global smooth solutions to the Vlasov–Maxwell–Boltzmann system, Mathematical Models and Methods in Applied Sciences, Volume 33 (2023) no. 10, p. 2157 | DOI:10.1142/s0218202523500513
- Convergence of the Navier–Stokes–Maxwell system to the Euler–Maxwell system near constant equilibrium, Zeitschrift für angewandte Mathematik und Physik, Volume 74 (2023) no. 3 | DOI:10.1007/s00033-023-02000-1
- Nonresonant bilinear forms for partially dissipative hyperbolic systems violating the Shizuta–Kawashima condition, Journal of Evolution Equations, Volume 22 (2022) no. 3 | DOI:10.1007/s00028-022-00817-3
- Lagrangian regularity of the electron magnetohydrodynamics flow on a bounded domain, Journal of Mathematical Analysis and Applications, Volume 511 (2022) no. 2, p. 126076 | DOI:10.1016/j.jmaa.2022.126076
- Convergence to Steady-States of Compressible Navier–Stokes–Maxwell Equations, Journal of Nonlinear Science, Volume 32 (2022) no. 1 | DOI:10.1007/s00332-021-09763-9
- Low Mach number limit of the compressible Euler–Cattaneo–Maxwell equations, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 1 | DOI:10.1007/s00033-021-01661-0
- Global Hilbert Expansion for the Relativistic Vlasov–Maxwell–Boltzmann System, Communications in Mathematical Physics, Volume 384 (2021) no. 1, p. 341 | DOI:10.1007/s00220-021-04079-x
- Asymptotic decay of bipolar isentropic/non-isentropic compressible Navier-Stokes-Maxwell systems, Journal of Differential Equations, Volume 301 (2021), p. 471 | DOI:10.1016/j.jde.2021.08.029
- The rigorous derivation of unipolar Euler–Maxwell system for electrons from bipolar Euler–Maxwell system by infinity‐ion‐mass limit, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 5, p. 3418 | DOI:10.1002/mma.6950
- Feedback control of charged ideal fluids, Nonlinearity, Volume 34 (2021) no. 3, p. 1316 | DOI:10.1088/1361-6544/abbd83
- The global convergence of non-isentropic Euler–Maxwell equations via Infinity-Ion-Mass limit, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 1 | DOI:10.1007/s00033-020-01459-6
- On the Sobolev Stability Threshold of 3D Couette Flow in a Uniform Magnetic Field, Communications in Mathematical Physics, Volume 377 (2020) no. 2, p. 859 | DOI:10.1007/s00220-020-03768-3
- On the Global Regularity for a Wave-Klein—Gordon Coupled System, Acta Mathematica Sinica, English Series, Volume 35 (2019) no. 6, p. 933 | DOI:10.1007/s10114-019-8413-6
- Two-dimensional gravity water waves with constant vorticity, I: Cubic lifespan, Analysis PDE, Volume 12 (2019) no. 4, p. 903 | DOI:10.2140/apde.2019.12.903
- Long-Term Regularity of the Periodic Euler–Poisson System for Electrons in 2D, Communications in Mathematical Physics, Volume 366 (2019) no. 3, p. 1135 | DOI:10.1007/s00220-019-03395-7
- Justification of the NLS Approximation for the Euler–Poisson Equation, Communications in Mathematical Physics, Volume 371 (2019) no. 2, p. 357 | DOI:10.1007/s00220-019-03576-4
- Uniform global convergence of non-isentropic Euler–Maxwell systems with dissipation, Nonlinear Analysis: Real World Applications, Volume 47 (2019), p. 332 | DOI:10.1016/j.nonrwa.2018.11.005
- Long term regularity of the one-fluid Euler–Maxwell system in 3D with vorticity, Advances in Mathematics, Volume 325 (2018), p. 719 | DOI:10.1016/j.aim.2017.11.027
- Multispeed Klein–Gordon Systems in Dimension Three, International Mathematics Research Notices, Volume 2018 (2018) no. 19, p. 6070 | DOI:10.1093/imrn/rnx038
- Recent advances on the global regularity for irrotational water waves, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 376 (2018) no. 2111, p. 20170089 | DOI:10.1098/rsta.2017.0089
- Absence of Shocks for One Dimensional Euler–Poisson System, Archive for Rational Mechanics and Analysis, Volume 223 (2017) no. 3, p. 1057 | DOI:10.1007/s00205-016-1053-4
- The Euler–Maxwell System for Electrons: Global Solutions in 2D, Archive for Rational Mechanics and Analysis, Volume 225 (2017) no. 2, p. 771 | DOI:10.1007/s00205-017-1114-3
- Global quasi-neutral limit of Euler–Maxwell systems with velocity dissipation, Journal of Mathematical Analysis and Applications, Volume 451 (2017) no. 1, p. 146 | DOI:10.1016/j.jmaa.2017.02.001
- Large time behavior for the non‐isentropic Navier–Stokes–Maxwell system, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 3, p. 663 | DOI:10.1002/mma.3999
- Decay estimates of solutions to the bipolar non-isentropic compressible Euler–Maxwell system, Nonlinearity, Volume 30 (2017) no. 10, p. 3743 | DOI:10.1088/1361-6544/aa7eff
- Splitting mixed Hodge structures over affine invariant manifolds, Annals of Mathematics (2016), p. 681 | DOI:10.4007/annals.2016.183.2.5
- Global solutions of the Euler–Maxwell two-fluid system in 3D, Annals of Mathematics, Volume 183 (2016) no. 2, p. 377 | DOI:10.4007/annals.2016.183.2.1
- Large-time behavior for fluid and kinetic plasmas with collisions, Bulletin of the Brazilian Mathematical Society, New Series, Volume 47 (2016) no. 1, p. 307 | DOI:10.1007/s00574-016-0140-3
- Global Analysis of a Model for Capillary Water Waves in Two Dimensions, Communications on Pure and Applied Mathematics, Volume 69 (2016) no. 11, p. 2015 | DOI:10.1002/cpa.21654
- Global existence and decay of solution for the nonisentropic Euler–Maxwell system with a nonconstant background density, Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 3 | DOI:10.1007/s00033-016-0656-9
- Asymptotic behavior of global smooth solutions for bipolar compressible Navier-Stokes-Maxwell system from plasmas, Acta Mathematica Scientia, Volume 35 (2015) no. 5, p. 955 | DOI:10.1016/s0252-9602(15)30030-8
- Large time behavior of solution for the full compressible navier-stokes-maxwell system, Communications on Pure and Applied Analysis, Volume 14 (2015) no. 6, p. 2283 | DOI:10.3934/cpaa.2015.14.2283
- Global Existence for Capillary Water Waves, Communications on Pure and Applied Mathematics, Volume 68 (2015) no. 4, p. 625 | DOI:10.1002/cpa.21535
Cité par 49 documents. Sources : Crossref