Global existence for the Euler-Maxwell system
[Existence globale pour le système d'Euler-Maxwell]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 3, pp. 469-503.

Le système d'Euler-Maxwell décrit l'évolution d'un plasma quand les collisions sont suffisamment importantes pour que chaque espèce soit dans un état d'équilibre hydrodynamique. On prouve dans cet article l'existence globale de petites solutions à ce système, posé en dimension 3 d'espace, en combinant la méthode des résonances en espace-temps (pour obtenir la décroissance des solutions) et des estimations d'énergie (pour contrôler la régularité des solutions). La décroissance non intégrable des solutions impose de combiner étroitement ces deux arguments en examinant le rôle des résonances au sein des estimations d'énergie.

The Euler-Maxwell system describes the evolution of a plasma when the collisions are important enough that each species is in a hydrodynamic equilibrium. In this paper we prove global existence of small solutions to this system set in the whole three-dimensional space, by combining the space-time resonance method (to obtain decay) and energy estimates (to control high frequencies). The non-integrable decay of the solutions makes it necessary to examine resonances within the energy estimate argument.

Publié le :
DOI : 10.24033/asens.2219
Classification : 35L03, 35L60, 35Q31, 35Q60, 37L50.
Keywords: Euler-Maxwell equations, global existence, space-time resonances.
Mot clés : Équations d'Euler-Maxwell, existence globale, résonances en espace-temps.
@article{ASENS_2014__47_3_469_0,
     author = {Germain, Pierre and Masmoudi, Nader},
     title = {Global existence  for the {Euler-Maxwell} system},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {469--503},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 47},
     number = {3},
     year = {2014},
     doi = {10.24033/asens.2219},
     mrnumber = {3239096},
     zbl = {1311.35195},
     language = {en},
     url = {https://www.numdam.org/articles/10.24033/asens.2219/}
}
TY  - JOUR
AU  - Germain, Pierre
AU  - Masmoudi, Nader
TI  - Global existence  for the Euler-Maxwell system
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2014
SP  - 469
EP  - 503
VL  - 47
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - https://www.numdam.org/articles/10.24033/asens.2219/
DO  - 10.24033/asens.2219
LA  - en
ID  - ASENS_2014__47_3_469_0
ER  - 
%0 Journal Article
%A Germain, Pierre
%A Masmoudi, Nader
%T Global existence  for the Euler-Maxwell system
%J Annales scientifiques de l'École Normale Supérieure
%D 2014
%P 469-503
%V 47
%N 3
%I Société Mathématique de France. Tous droits réservés
%U https://www.numdam.org/articles/10.24033/asens.2219/
%R 10.24033/asens.2219
%G en
%F ASENS_2014__47_3_469_0
Germain, Pierre; Masmoudi, Nader. Global existence  for the Euler-Maxwell system. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 3, pp. 469-503. doi : 10.24033/asens.2219. https://www.numdam.org/articles/10.24033/asens.2219/

Besse, C.; Degond, P.; Deluzet, F.; Claudel, J.; Gallice, G.; Tessieras, C. A model hierarchy for ionospheric plasma modeling, Math. Models Methods Appl. Sci., Volume 14 (2004), pp. 393-415 (ISSN: 0218-2025) | DOI | MR | Zbl

Bellan, P. M., Cambridge Univ. Press, 2006

Bony, J.-M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., Volume 14 (1981), pp. 209-246 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Boyd, T. J. M.; Sanderson, J. J., Cambridge Univ. Press, Cambridge, 2003, 532 pages (ISBN: 0-521-45290-2; 0-521-45912-5) | DOI | MR | Zbl

Christodoulou, D., EMS Monographs in Math., European Mathematical Society (EMS), Zürich, 2007, 992 pages (ISBN: 978-3-03719-031-9) | DOI | MR | Zbl

Chen, G.-Q.; Jerome, J. W.; Wang, D. Compressible Euler-Maxwell equations, Transport Theory Statist. Phys. (Proceedings of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI, 1998)), Volume 29 (2000), pp. 311-331 (ISSN: 0041-1450) | DOI | MR | Zbl

Coifman, R. R.; Meyer, Y., Astérisque, 57, Soc. Math. France, Paris, 1978, 185 pages | Numdam | MR | Zbl

Dendy, R.-O., Oxford Univ. Press, 1990

Duan, R. Global smooth flows for the compressible Euler-Maxwell system. The relaxation case, J. Hyperbolic Differ. Equ., Volume 8 (2011), pp. 375-413 (ISSN: 0219-8916) | DOI | MR | Zbl

Germain, P. Space-time resonances, Journées Equations aux Dérivées Partielles (2010) (exp. no 8) | DOI

Germain, P. Global existence for coupled Klein-Gordon equations with different speeds, Ann. Inst. Fourier (Grenoble), Volume 61 (2011), pp. 2463-2506 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Germain, P.; Masmoudi, N.; Pausader, B. Nonneutral global solutions for the electron Euler-Poisson system in three dimensions, SIAM J. Math. Anal., Volume 45 (2013), pp. 267-278 (ISSN: 0036-1410) | DOI | MR | Zbl

Germain, P.; Masmoudi, N.; Shatah, J. Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not., Volume 2009 (2009), pp. 414-432 (ISSN: 1073-7928) | DOI | MR | Zbl

Germain, P.; Masmoudi, N.; Shatah, J. Global solutions for the gravity water waves equation in dimension 3, C. R. Math. Acad. Sci. Paris, Volume 347 (2009), pp. 897-902 (ISSN: 1631-073X) | DOI | MR | Zbl

Germain, P.; Masmoudi, N.; Shatah, J. Global solutions for the gravity water waves equation in dimension 3, Ann. of Math., Volume 175 (2012), pp. 691-754 (ISSN: 0003-486X) | DOI | MR | Zbl

Guo, Y.; Pausader, B. Global smooth ion dynamics in the Euler-Poisson system, Comm. Math. Phys., Volume 303 (2011), pp. 89-125 (ISSN: 0010-3616) | DOI | MR | Zbl

Golse, F.; Saint-Raymond, L. The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., Volume 155 (2004), pp. 81-161 (ISSN: 0020-9910) | DOI | MR | Zbl

Guo, Y.; Tahvildar-Zadeh, A. S., Nonlinear partial differential equations (Evanston, IL, 1998) (Contemp. Math.), Volume 238, Amer. Math. Soc., Providence, RI, 1999, pp. 151-161 | DOI | MR | Zbl

Guo, Y. Smooth irrotational flows in the large to the Euler-Poisson system in 𝐑3+1 , Comm. Math. Phys., Volume 195 (1998), pp. 249-265 (ISSN: 0010-3616) | DOI | MR | Zbl

Ginibre, J.; Velo, G. Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., Volume 43 (1985), pp. 399-442 (ISSN: 0246-0211) | Numdam | MR | Zbl

Ibrahim, S.; Masmoudi, N.; Nakanishi, K. Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, Volume 4 (2011), pp. 405-460 (ISSN: 1948-206X) | DOI | MR | Zbl

Jang, J.; Masmoudi, N. Derivation of Ohm's law from the kinetic equations, SIAM J. Math. Anal., Volume 44 (2012), pp. 3649-3669 (ISSN: 0036-1410) | DOI | MR | Zbl

Lions, P.-L.; Masmoudi, N. From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II, Arch. Ration. Mech. Anal., Volume 158 (2001) (ISSN: 0003-9527) | DOI | MR | Zbl

Levermore, C. D.; Masmoudi, N. From the Boltzmann equation to an incompressible Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal., Volume 196 (2010), pp. 753-809 (ISSN: 0003-9527) | DOI | MR | Zbl

Masmoudi, N. Global well posedness for the Maxwell-Navier-Stokes system in 2D, J. Math. Pures Appl., Volume 93 (2010), pp. 559-571 (ISSN: 0021-7824) | DOI | MR | Zbl

Makino, T.; Perthame, B. Sur les solutions à symétrie sphérique de l'équation d'Euler-Poisson pour l'évolution d'étoiles gazeuses, Japan J. Appl. Math., Volume 7 (1990), pp. 165-170 (ISSN: 0910-2043) | DOI | MR | Zbl

Muscalu, C.; Schlag, W., Cambridge Studies in Advanced Math., 138, Cambridge Univ. Press, 2013 | Zbl

Makino, T.; Ukai, S.; Kawashima, S. Sur la solution à support compact de l'équation d'Euler compressible, Japan J. Appl. Math., Volume 3 (1986), pp. 249-257 (ISSN: 0910-2043) | DOI | MR | Zbl

Perthame, B. Nonexistence of global solutions to Euler-Poisson equations for repulsive forces, Japan J. Appl. Math., Volume 7 (1990), pp. 363-367 (ISSN: 0910-2043) | DOI | MR | Zbl

Pan, R.; Smoller, J. A. Blowup of smooth solutions for relativistic Euler equations, Comm. Math. Phys., Volume 262 (2006), pp. 729-755 (ISSN: 0010-3616) | DOI | MR | Zbl

Peng, Y.-J.; Wang, S. Rigorous derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations, SIAM J. Math. Anal., Volume 40 (2008), pp. 540-565 (ISSN: 0036-1410) | DOI | MR | Zbl

Sideris, T. C. Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys., Volume 101 (1985), pp. 475-485 http://projecteuclid.org/euclid.cmp/1104114244 (ISSN: 0010-3616) | DOI | MR | Zbl

Texier, B. WKB asymptotics for the Euler-Maxwell equations, Asymptot. Anal., Volume 42 (2005), pp. 211-250 (ISSN: 0921-7134) | MR | Zbl

Yang, J.; Wang, S. Non-relativistic limit of two-fluid Euler-Maxwell equations arising from plasma physics, ZAMM Z. Angew. Math. Mech., Volume 89 (2009), pp. 981-994 (ISSN: 0044-2267) | DOI | MR | Zbl

Yang, J.; Wang, S.; Li, Y.; Luo, D. Rigorous derivation of incompressible type Euler equations from non-isentropic Euler-Maxwell equations, Nonlinear Anal., Volume 73 (2010), pp. 3613-3625 (ISSN: 0362-546X) | DOI | MR | Zbl

  • Feng, Yue-Hong; Li, Rui; Mei, Ming; Wang, Shu Global convergence rates in zero-relaxation limits for non-isentropic Euler-Maxwell equations, Journal of Differential Equations, Volume 414 (2025), p. 372 | DOI:10.1016/j.jde.2024.09.020
  • Crin-Barat, Timothée; Peng, Yue-Jun; Shou, Ling-Yun; Xu, Jiang A new characterization of the dissipation structure and the relaxation limit for the compressible Euler-Maxwell system, Journal of Functional Analysis, Volume 289 (2025) no. 2, p. 110918 | DOI:10.1016/j.jfa.2025.110918
  • Stewart, Gavin Long Time Decay and Asymptotics for the Complex mKdV Equation, SIAM Journal on Mathematical Analysis, Volume 57 (2025) no. 1, p. 825 | DOI:10.1137/22m1528495
  • Ionescu, Alexandru D.; Pausader, Benoit; Wang, Xuecheng; Widmayer, Klaus Nonlinear Landau Damping for the Vlasov–Poisson System in R3: The Poisson Equilibrium, Annals of PDE, Volume 10 (2024) no. 1 | DOI:10.1007/s40818-023-00161-w
  • Antonelli, Paolo; Marcati, Pierangelo; Scandone, Raffaele Existence and stability of almost finite energy weak solutions to the quantum Euler-Maxwell system, Journal de Mathématiques Pures et Appliquées, Volume 191 (2024), p. 103629 | DOI:10.1016/j.matpur.2024.103629
  • Anjolras, Philippe Stability of the constant states in the augmented Born–Infeld system, Journal of Hyperbolic Differential Equations, Volume 21 (2024) no. 04, p. 845 | DOI:10.1142/s0219891624500139
  • Li, Yachun; Lu, Peng; Zhao, Liang Global-in-time error estimates of non-relativistic limits for Euler–Maxwell system near non-constant equilibrium, Nonlinear Analysis: Real World Applications, Volume 80 (2024), p. 104163 | DOI:10.1016/j.nonrwa.2024.104163
  • Ouyang, Zhimeng; Wu, Lei; Xiao, Qinghua Hilbert expansion for Coulomb collisional kinetic models, Quarterly of Applied Mathematics, Volume 83 (2024) no. 2, p. 211 | DOI:10.1090/qam/1689
  • Jin, Rui; Li, Yachun; Zhao, Liang Approximations of Euler-Maxwell systems by drift-diffusion equations through zero-relaxation limits near the non-constant equilibrium, Science China Mathematics (2024) | DOI:10.1007/s11425-023-2286-7
  • Möller, Jakob; Mauser, Norbert J. The Euler–Poisswell/Darwin equation and the asymptotic hierarchy of the Euler–Maxwell equation, Asymptotic Analysis, Volume 135 (2023) no. 3-4, p. 525 | DOI:10.3233/asy-231864
  • Li, Yeping; Zhu, Yi Global well-posedness for 3D Euler–Maxwell two-fluids system, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 9 | DOI:10.1007/s00526-023-02586-4
  • Ionescu, A D; Pausader, B; Wang, X; Widmayer, K On the stability of homogeneous equilibria in the Vlasov–Poisson system on R3, Classical and Quantum Gravity, Volume 40 (2023) no. 18, p. 185007 | DOI:10.1088/1361-6382/acebb0
  • Deng, Yu; Masmoudi, Nader Long‐Time Instability of the Couette Flow in Low Gevrey Spaces, Communications on Pure and Applied Mathematics, Volume 76 (2023) no. 10, p. 2804 | DOI:10.1002/cpa.22092
  • Li, Yachun; Wang, Chenmu; Zhao, Liang Global convergence in non-relativistic limits for Euler-Maxwell system near non-constant equilibrium, Journal of Differential Equations, Volume 377 (2023), p. 297 | DOI:10.1016/j.jde.2023.08.030
  • Feng, Yue-Hong; Li, Xin; Mei, Ming; Wang, Shu Zero-Relaxation Limits of the Non-Isentropic Euler–Maxwell System for Well/Ill-Prepared Initial Data, Journal of Nonlinear Science, Volume 33 (2023) no. 5 | DOI:10.1007/s00332-023-09934-w
  • Wang, Xuecheng Global Solution of the 3D Relativistic Vlasov–Poisson System for a Class of Large Data, Journal of Statistical Physics, Volume 190 (2023) no. 10 | DOI:10.1007/s10955-023-03178-4
  • Duan, Renjun; Yang, Dongcheng; Yu, Hongjun Compressible Euler–Maxwell limit for global smooth solutions to the Vlasov–Maxwell–Boltzmann system, Mathematical Models and Methods in Applied Sciences, Volume 33 (2023) no. 10, p. 2157 | DOI:10.1142/s0218202523500513
  • Li, Zongguang; Yang, Dongcheng Convergence of the Navier–Stokes–Maxwell system to the Euler–Maxwell system near constant equilibrium, Zeitschrift für angewandte Mathematik und Physik, Volume 74 (2023) no. 3 | DOI:10.1007/s00033-023-02000-1
  • Bianchini, Roberta; Natalini, Roberto Nonresonant bilinear forms for partially dissipative hyperbolic systems violating the Shizuta–Kawashima condition, Journal of Evolution Equations, Volume 22 (2022) no. 3 | DOI:10.1007/s00028-022-00817-3
  • Besse, Nicolas Lagrangian regularity of the electron magnetohydrodynamics flow on a bounded domain, Journal of Mathematical Analysis and Applications, Volume 511 (2022) no. 2, p. 126076 | DOI:10.1016/j.jmaa.2022.126076
  • Feng, Yue-Hong; Li, Xin; Mei, Ming; Wang, Shu; Cao, Yang-Chen Convergence to Steady-States of Compressible Navier–Stokes–Maxwell Equations, Journal of Nonlinear Science, Volume 32 (2022) no. 1 | DOI:10.1007/s00332-021-09763-9
  • Li, Fucai; Zhang, Shuxing; Zhang, Zhipeng Low Mach number limit of the compressible Euler–Cattaneo–Maxwell equations, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 1 | DOI:10.1007/s00033-021-01661-0
  • Guo, Yan; Xiao, Qinghua Global Hilbert Expansion for the Relativistic Vlasov–Maxwell–Boltzmann System, Communications in Mathematical Physics, Volume 384 (2021) no. 1, p. 341 | DOI:10.1007/s00220-021-04079-x
  • Feng, Yue-Hong; Li, Xin; Mei, Ming; Wang, Shu Asymptotic decay of bipolar isentropic/non-isentropic compressible Navier-Stokes-Maxwell systems, Journal of Differential Equations, Volume 301 (2021), p. 471 | DOI:10.1016/j.jde.2021.08.029
  • Zhao, Liang The rigorous derivation of unipolar Euler–Maxwell system for electrons from bipolar Euler–Maxwell system by infinity‐ion‐mass limit, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 5, p. 3418 | DOI:10.1002/mma.6950
  • Hochgerner, Simon Feedback control of charged ideal fluids, Nonlinearity, Volume 34 (2021) no. 3, p. 1316 | DOI:10.1088/1361-6544/abbd83
  • Feng, Yue-Hong; Li, Xin; Wang, Shu The global convergence of non-isentropic Euler–Maxwell equations via Infinity-Ion-Mass limit, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 1 | DOI:10.1007/s00033-020-01459-6
  • Liss, Kyle On the Sobolev Stability Threshold of 3D Couette Flow in a Uniform Magnetic Field, Communications in Mathematical Physics, Volume 377 (2020) no. 2, p. 859 | DOI:10.1007/s00220-020-03768-3
  • Ionescu, Alexandru D.; Pausader, Benoit On the Global Regularity for a Wave-Klein—Gordon Coupled System, Acta Mathematica Sinica, English Series, Volume 35 (2019) no. 6, p. 933 | DOI:10.1007/s10114-019-8413-6
  • Ifrim, Mihaela; Tataru, Daniel Two-dimensional gravity water waves with constant vorticity, I: Cubic lifespan, Analysis PDE, Volume 12 (2019) no. 4, p. 903 | DOI:10.2140/apde.2019.12.903
  • Zheng, Fan Long-Term Regularity of the Periodic Euler–Poisson System for Electrons in 2D, Communications in Mathematical Physics, Volume 366 (2019) no. 3, p. 1135 | DOI:10.1007/s00220-019-03395-7
  • Liu, Huimin; Pu, Xueke Justification of the NLS Approximation for the Euler–Poisson Equation, Communications in Mathematical Physics, Volume 371 (2019) no. 2, p. 357 | DOI:10.1007/s00220-019-03576-4
  • Yang, Yong-Fu; Hu, Hui-Fang Uniform global convergence of non-isentropic Euler–Maxwell systems with dissipation, Nonlinear Analysis: Real World Applications, Volume 47 (2019), p. 332 | DOI:10.1016/j.nonrwa.2018.11.005
  • Ionescu, Alexandru D.; Lie, Victor Long term regularity of the one-fluid Euler–Maxwell system in 3D with vorticity, Advances in Mathematics, Volume 325 (2018), p. 719 | DOI:10.1016/j.aim.2017.11.027
  • Deng, Yu Multispeed Klein–Gordon Systems in Dimension Three, International Mathematics Research Notices, Volume 2018 (2018) no. 19, p. 6070 | DOI:10.1093/imrn/rnx038
  • Ionescu, A. D.; Pusateri, F. Recent advances on the global regularity for irrotational water waves, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 376 (2018) no. 2111, p. 20170089 | DOI:10.1098/rsta.2017.0089
  • Guo, Yan; Han, Lijia; Zhang, Jingjun Absence of Shocks for One Dimensional Euler–Poisson System, Archive for Rational Mechanics and Analysis, Volume 223 (2017) no. 3, p. 1057 | DOI:10.1007/s00205-016-1053-4
  • Deng, Yu; Ionescu, Alexandru D.; Pausader, Benoit The Euler–Maxwell System for Electrons: Global Solutions in 2D, Archive for Rational Mechanics and Analysis, Volume 225 (2017) no. 2, p. 771 | DOI:10.1007/s00205-017-1114-3
  • Peng, Yue-Jun; Wasiolek, Victor Global quasi-neutral limit of Euler–Maxwell systems with velocity dissipation, Journal of Mathematical Analysis and Applications, Volume 451 (2017) no. 1, p. 146 | DOI:10.1016/j.jmaa.2017.02.001
  • Liu, Qingqing; Su, Yifan Large time behavior for the non‐isentropic Navier–Stokes–Maxwell system, Mathematical Methods in the Applied Sciences, Volume 40 (2017) no. 3, p. 663 | DOI:10.1002/mma.3999
  • Tan, Zhong; Wang, Yong; Tong, Leilei Decay estimates of solutions to the bipolar non-isentropic compressible Euler–Maxwell system, Nonlinearity, Volume 30 (2017) no. 10, p. 3743 | DOI:10.1088/1361-6544/aa7eff
  • Filip, Simion Splitting mixed Hodge structures over affine invariant manifolds, Annals of Mathematics (2016), p. 681 | DOI:10.4007/annals.2016.183.2.5
  • Guo, Yan; Ionescu, Alexandru; Pausader, Benoit Global solutions of the Euler–Maxwell two-fluid system in 3D, Annals of Mathematics, Volume 183 (2016) no. 2, p. 377 | DOI:10.4007/annals.2016.183.2.1
  • Duan, Renjun Large-time behavior for fluid and kinetic plasmas with collisions, Bulletin of the Brazilian Mathematical Society, New Series, Volume 47 (2016) no. 1, p. 307 | DOI:10.1007/s00574-016-0140-3
  • Ionescu, Alexandru D.; Pusateri, Fabio Global Analysis of a Model for Capillary Water Waves in Two Dimensions, Communications on Pure and Applied Mathematics, Volume 69 (2016) no. 11, p. 2015 | DOI:10.1002/cpa.21654
  • Wang, Weike; Xu, Xin Global existence and decay of solution for the nonisentropic Euler–Maxwell system with a nonconstant background density, Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 3 | DOI:10.1007/s00033-016-0656-9
  • FENG, Yuehong; WANG, Shu; LI, Xin Asymptotic behavior of global smooth solutions for bipolar compressible Navier-Stokes-Maxwell system from plasmas, Acta Mathematica Scientia, Volume 35 (2015) no. 5, p. 955 | DOI:10.1016/s0252-9602(15)30030-8
  • Wang, Weike; Xu, Xin Large time behavior of solution for the full compressible navier-stokes-maxwell system, Communications on Pure and Applied Analysis, Volume 14 (2015) no. 6, p. 2283 | DOI:10.3934/cpaa.2015.14.2283
  • Germain, Pierre; Masmoudi, Nader; Shatah, Jalal Global Existence for Capillary Water Waves, Communications on Pure and Applied Mathematics, Volume 68 (2015) no. 4, p. 625 | DOI:10.1002/cpa.21535

Cité par 49 documents. Sources : Crossref