Le système d'Euler-Maxwell décrit l'évolution d'un plasma quand les collisions sont suffisamment importantes pour que chaque espèce soit dans un état d'équilibre hydrodynamique. On prouve dans cet article l'existence globale de petites solutions à ce système, posé en dimension 3 d'espace, en combinant la méthode des résonances en espace-temps (pour obtenir la décroissance des solutions) et des estimations d'énergie (pour contrôler la régularité des solutions). La décroissance non intégrable des solutions impose de combiner étroitement ces deux arguments en examinant le rôle des résonances au sein des estimations d'énergie.
The Euler-Maxwell system describes the evolution of a plasma when the collisions are important enough that each species is in a hydrodynamic equilibrium. In this paper we prove global existence of small solutions to this system set in the whole three-dimensional space, by combining the space-time resonance method (to obtain decay) and energy estimates (to control high frequencies). The non-integrable decay of the solutions makes it necessary to examine resonances within the energy estimate argument.
DOI : 10.24033/asens.2219
Keywords: Euler-Maxwell equations, global existence, space-time resonances.
Mot clés : Équations d'Euler-Maxwell, existence globale, résonances en espace-temps.
@article{ASENS_2014__47_3_469_0, author = {Germain, Pierre and Masmoudi, Nader}, title = {Global existence for the {Euler-Maxwell} system}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {469--503}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {3}, year = {2014}, doi = {10.24033/asens.2219}, mrnumber = {3239096}, zbl = {1311.35195}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2219/} }
TY - JOUR AU - Germain, Pierre AU - Masmoudi, Nader TI - Global existence for the Euler-Maxwell system JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 469 EP - 503 VL - 47 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2219/ DO - 10.24033/asens.2219 LA - en ID - ASENS_2014__47_3_469_0 ER -
%0 Journal Article %A Germain, Pierre %A Masmoudi, Nader %T Global existence for the Euler-Maxwell system %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 469-503 %V 47 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2219/ %R 10.24033/asens.2219 %G en %F ASENS_2014__47_3_469_0
Germain, Pierre; Masmoudi, Nader. Global existence for the Euler-Maxwell system. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 3, pp. 469-503. doi : 10.24033/asens.2219. http://archive.numdam.org/articles/10.24033/asens.2219/
A model hierarchy for ionospheric plasma modeling, Math. Models Methods Appl. Sci., Volume 14 (2004), pp. 393-415 (ISSN: 0218-2025) | DOI | MR | Zbl
, Cambridge Univ. Press, 2006
Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup., Volume 14 (1981), pp. 209-246 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
, Cambridge Univ. Press, Cambridge, 2003, 532 pages (ISBN: 0-521-45290-2; 0-521-45912-5) |, EMS Monographs in Math., European Mathematical Society (EMS), Zürich, 2007, 992 pages (ISBN: 978-3-03719-031-9) | DOI | MR | Zbl
Compressible Euler-Maxwell equations, Transport Theory Statist. Phys. (Proceedings of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI, 1998)), Volume 29 (2000), pp. 311-331 (ISSN: 0041-1450) | DOI | MR | Zbl
, Astérisque, 57, Soc. Math. France, Paris, 1978, 185 pages | Numdam | MR | Zbl
, Oxford Univ. Press, 1990
Global smooth flows for the compressible Euler-Maxwell system. The relaxation case, J. Hyperbolic Differ. Equ., Volume 8 (2011), pp. 375-413 (ISSN: 0219-8916) | DOI | MR | Zbl
Space-time resonances, Journées Equations aux Dérivées Partielles (2010) (exp. no 8) | DOI
Global existence for coupled Klein-Gordon equations with different speeds, Ann. Inst. Fourier (Grenoble), Volume 61 (2011), pp. 2463-2506 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Nonneutral global solutions for the electron Euler-Poisson system in three dimensions, SIAM J. Math. Anal., Volume 45 (2013), pp. 267-278 (ISSN: 0036-1410) | DOI | MR | Zbl
Global solutions for 3D quadratic Schrödinger equations, Int. Math. Res. Not., Volume 2009 (2009), pp. 414-432 (ISSN: 1073-7928) | DOI | MR | Zbl
Global solutions for the gravity water waves equation in dimension 3, C. R. Math. Acad. Sci. Paris, Volume 347 (2009), pp. 897-902 (ISSN: 1631-073X) | DOI | MR | Zbl
Global solutions for the gravity water waves equation in dimension 3, Ann. of Math., Volume 175 (2012), pp. 691-754 (ISSN: 0003-486X) | DOI | MR | Zbl
Global smooth ion dynamics in the Euler-Poisson system, Comm. Math. Phys., Volume 303 (2011), pp. 89-125 (ISSN: 0010-3616) | DOI | MR | Zbl
The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., Volume 155 (2004), pp. 81-161 (ISSN: 0020-9910) | DOI | MR | Zbl
, Nonlinear partial differential equations (Evanston, IL, 1998) (Contemp. Math.), Volume 238, Amer. Math. Soc., Providence, RI, 1999, pp. 151-161 | DOI | MR | Zbl
Smooth irrotational flows in the large to the Euler-Poisson system in , Comm. Math. Phys., Volume 195 (1998), pp. 249-265 (ISSN: 0010-3616) | DOI | MR | Zbl
Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., Volume 43 (1985), pp. 399-442 (ISSN: 0246-0211) | Numdam | MR | Zbl
Scattering threshold for the focusing nonlinear Klein-Gordon equation, Anal. PDE, Volume 4 (2011), pp. 405-460 (ISSN: 1948-206X) | DOI | MR | Zbl
Derivation of Ohm's law from the kinetic equations, SIAM J. Math. Anal., Volume 44 (2012), pp. 3649-3669 (ISSN: 0036-1410) | DOI | MR | Zbl
From the Boltzmann equations to the equations of incompressible fluid mechanics. I, II, Arch. Ration. Mech. Anal., Volume 158 (2001) (ISSN: 0003-9527) | DOI | MR | Zbl
From the Boltzmann equation to an incompressible Navier-Stokes-Fourier system, Arch. Ration. Mech. Anal., Volume 196 (2010), pp. 753-809 (ISSN: 0003-9527) | DOI | MR | Zbl
Global well posedness for the Maxwell-Navier-Stokes system in 2D, J. Math. Pures Appl., Volume 93 (2010), pp. 559-571 (ISSN: 0021-7824) | DOI | MR | Zbl
Sur les solutions à symétrie sphérique de l'équation d'Euler-Poisson pour l'évolution d'étoiles gazeuses, Japan J. Appl. Math., Volume 7 (1990), pp. 165-170 (ISSN: 0910-2043) | DOI | MR | Zbl
, Cambridge Studies in Advanced Math., 138, Cambridge Univ. Press, 2013 | Zbl
Sur la solution à support compact de l'équation d'Euler compressible, Japan J. Appl. Math., Volume 3 (1986), pp. 249-257 (ISSN: 0910-2043) | DOI | MR | Zbl
Nonexistence of global solutions to Euler-Poisson equations for repulsive forces, Japan J. Appl. Math., Volume 7 (1990), pp. 363-367 (ISSN: 0910-2043) | DOI | MR | Zbl
Blowup of smooth solutions for relativistic Euler equations, Comm. Math. Phys., Volume 262 (2006), pp. 729-755 (ISSN: 0010-3616) | DOI | MR | Zbl
Rigorous derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations, SIAM J. Math. Anal., Volume 40 (2008), pp. 540-565 (ISSN: 0036-1410) | DOI | MR | Zbl
Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys., Volume 101 (1985), pp. 475-485 http://projecteuclid.org/euclid.cmp/1104114244 (ISSN: 0010-3616) | DOI | MR | Zbl
WKB asymptotics for the Euler-Maxwell equations, Asymptot. Anal., Volume 42 (2005), pp. 211-250 (ISSN: 0921-7134) | MR | Zbl
Non-relativistic limit of two-fluid Euler-Maxwell equations arising from plasma physics, ZAMM Z. Angew. Math. Mech., Volume 89 (2009), pp. 981-994 (ISSN: 0044-2267) | DOI | MR | Zbl
Rigorous derivation of incompressible type Euler equations from non-isentropic Euler-Maxwell equations, Nonlinear Anal., Volume 73 (2010), pp. 3613-3625 (ISSN: 0362-546X) | DOI | MR | Zbl
Cité par Sources :