Le but de cet article est de démontrer des théorèmes limites pour les flots horocycliques sur les surfaces compactes à courbure négative constante. Notre principal outil est une famille particulière de mesures additives, höldériennes, invariantes par le flot horocyclique sur les arcs rectifiables. Une formule asymptotique pour les intégrales ergodiques des flots horocycliques est ensuite établie en termes des mesures additives, et les théorèmes limites en découlent. Les constructions et les résultats ici développés ressemblent à ceux de [15], [16], [5] et [6] qui traitent des flots de translation sur les surfaces plates. Les preuves sont basées sur des méthodes de la théorie des répresentations développées en [12] pour l'étude de l'équation cohomologique et du comportement asymptotique des moyennes ergodiques des flots horocycliques.
The main results of this paper are limit theorems for horocycle flows on compact surfaces of constant negative curvature.
One of the main objects of the paper is a special family of horocycle-invariant finitely additive Hölder measures on rectifiable arcs. An asymptotic formula for ergodic integrals for horocycle flows is obtained in terms of the finitely-additive measures, and limit theorems follow as a corollary of the asymptotic formula.
The objects and results of this paper are similar to those in [15, 16], [5] and [6] for translation flows on flat surfaces. The arguments are based on the representation theory methods developed in [12] for the classification of invariant distributions, the solution of the cohomological equation and the asymptotics of ergodic averages of horocycle flows.
DOI : 10.24033/asens.2229
Keywords: Horocycle flows, ergodic averages, limit distributions.
Mot clés : Flots horocycliques, moyennes ergodiques, distributions limites.
@article{ASENS_2014__47_5_851_0, author = {Bufetov, Alexander and Forni, Giovanni}, title = {Limit {Theorems} for {Horocycle} {Flows}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {851--903}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {5}, year = {2014}, doi = {10.24033/asens.2229}, mrnumber = {3294619}, zbl = {06386727}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2229/} }
TY - JOUR AU - Bufetov, Alexander AU - Forni, Giovanni TI - Limit Theorems for Horocycle Flows JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 851 EP - 903 VL - 47 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2229/ DO - 10.24033/asens.2229 LA - en ID - ASENS_2014__47_5_851_0 ER -
%0 Journal Article %A Bufetov, Alexander %A Forni, Giovanni %T Limit Theorems for Horocycle Flows %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 851-903 %V 47 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2229/ %R 10.24033/asens.2229 %G en %F ASENS_2014__47_5_851_0
Bufetov, Alexander; Forni, Giovanni. Limit Theorems for Horocycle Flows. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 5, pp. 851-903. doi : 10.24033/asens.2229. http://archive.numdam.org/articles/10.24033/asens.2229/
Simplicity of Lyapunov spectra: proof of the Zorich-Kontsevich conjecture, Acta Math., Volume 198 (2007), pp. 1-56 (ISSN: 0001-5962) | DOI | MR | Zbl
Irreducible unitary representations of the Lorentz group, Ann. of Math., Volume 48 (1947), pp. 568-640 (ISSN: 0003-486X) | DOI | MR | Zbl
, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., New York, 1999 (ISBN: 0-471-19745-9) | DOI | MR
Finitely-additive measures on the asymptotic foliations of a Markov compactum (preprint arXiv:0902.3303 ) | MR | Zbl
Limit Theorems for Translation Flows (preprint arXiv:0804.3970 ) | MR | Zbl
Hölder cocycles and ergodic integrals for translation flows on flat surfaces, Electron. Res. Announc. Math. Sci., Volume 17 (2010), pp. 34-42 (ISSN: 1935-9179) | DOI | MR | Zbl
Horocycle flow on geometrically finite surfaces, Duke Math. J., Volume 61 (1990), pp. 779-803 (ISSN: 0012-7094) | DOI | MR | Zbl
Limiting curlicue measures for theta sums, Ann. Inst. Henri Poincaré Probab. Stat., Volume 47 (2011), pp. 466-497 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl
A note on Hölder regularity of invariant distributions for horocycle flows, Nonlinearity, Volume 18 (2005), pp. 2715-2726 (ISSN: 0951-7715) | DOI | MR | Zbl
Invariant measures and minimal sets of horospherical flows, Invent. Math., Volume 64 (1981), pp. 357-385 (ISSN: 0020-9910) | DOI | MR | Zbl
Invariant distributions and time averages for horocycle flows, Duke Math. J., Volume 119 (2003), pp. 465-526 (ISSN: 0012-7094) | DOI | MR | Zbl
Equidistribution of nilflows and applications to theta sums, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 409-433 (ISSN: 0143-3857) | DOI | MR | Zbl
Asymptotic expansions of finite theta series, Acta Arith., Volume 32 (1977), pp. 129-146 (ISSN: 0065-1036) | DOI | MR | Zbl
On generalized eigenfunctions of dynamical systems, Uspehi Mat. Nauk (N.S.), Volume 10 (1955), pp. 173-178 (ISSN: 0042-1316) | MR
Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math., Volume 155 (2002), pp. 1-103 (ISSN: 0003-486X) | DOI | MR | Zbl
Solutions of the cohomological equation for area-preserving flows on compact surfaces of higher genus, Ann. of Math., Volume 146 (1997), pp. 295-344 (ISSN: 0003-486X) | DOI | MR | Zbl
, Recent advances in topological dynamics (Proc. Conf., Yale Univ., New Haven, Conn., 1972; in honor of Gustav Arnold Hedlund) (Lecture Notes in Math.), Volume 318, Springer, Berlin, 1973, pp. 95-115 | MR | Zbl
Unitary representations of Lie groups and geodesic flows on surfaces of constant negative curvature, Dokl. Akad. Nauk SSSR (N.S.), Volume 76 (1951), pp. 771-774 | MR | Zbl
Unitary representations of the Lorentz group, Acad. Sci. USSR. J. Phys., Volume 10 (1946), pp. 93-94 | MR | Zbl
The entropy of horocycle flows, Dokl. Akad. Nauk SSSR, Volume 136 (1961), pp. 768-770 (ISSN: 0002-3264) | MR | Zbl
Fuchsian groups and transitive horocycles, Duke Math. J., Volume 2 (1936), pp. 530-542 (ISSN: 0012-7094) | DOI | JFM | MR | Zbl
On the uniform equidistribution of long closed horocycles, Asian J. Math., Volume 4 (2000), pp. 839-853 (ISSN: 1093-6106) | DOI | MR | Zbl
A duality for symmetric spaces with applications to group representations, Advances in Math., Volume 5 (1970), pp. 1-154 (ISSN: 0001-8708) | DOI | MR | Zbl
On the central limit theorem for theta series, Michigan Math. J., Volume 29 (1982), pp. 65-77 http://projecteuclid.org/euclid.mmj/1029002615 (ISSN: 0026-2285) | DOI | MR | Zbl
The uniform central limit theorem for theta sums, Duke Math. J., Volume 50 (1983), pp. 649-666 (ISSN: 0012-7094) | DOI | MR | Zbl
, The mathematical beauty of physics (Saclay, 1996) (Adv. Ser. Math. Phys.), Volume 24, World Sci. Publ., River Edge, NJ, 1997, pp. 318-332 | MR | Zbl
The horocycle flow is mixing of all degrees, Invent. Math., Volume 46 (1978), pp. 201-209 (ISSN: 0020-9910) | DOI | MR | Zbl
Limit theorems for theta sums, Duke Math. J., Volume 97 (1999), pp. 127-153 (ISSN: 0012-7094) | DOI | MR | Zbl
Flows of horocycles on surfaces of constant negative curvature, Uspehi Matem. Nauk (N.S.), Volume 8 (1953), pp. 125-126 (ISSN: 0042-1316) | MR
Factors of horocycle flows, Ergodic Theory Dynam. Systems, Volume 2 (1982), pp. 465-489 (ISSN: 0143-3857) | DOI | MR | Zbl
Rigidity of horocycle flows, Ann. of Math., Volume 115 (1982), pp. 597-614 (ISSN: 0003-486X) | DOI | MR | Zbl
Horocycle flows, joinings and rigidity of products, Ann. of Math., Volume 118 (1983), pp. 277-313 (ISSN: 0003-486X) | DOI | MR | Zbl
The rate of mixing for geodesic and horocycle flows, Ergodic Theory Dynam. Systems, Volume 7 (1987), pp. 267-288 (ISSN: 0143-3857) | DOI | MR | Zbl
Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series, Comm. Pure Appl. Math., Volume 34 (1981), pp. 719-739 (ISSN: 0010-3640) | DOI | MR | Zbl
On the uniform equidistribution of long closed horocycles, Duke Math. J., Volume 123 (2004), pp. 507-547 (ISSN: 0012-7094) | DOI | MR | Zbl
, Automorphic forms, representation theory and arithmetic (Bombay, 1979) (Tata Inst. Fund. Res. Studies in Math.), Volume 10, Tata Inst. Fundamental Res., Bombay, 1981, pp. 275-301 | DOI | MR | Zbl
, Geometric study of foliations (Tokyo, 1993), World Sci. Publ., River Edge, NJ, 1994, pp. 479-498 | MR
Finite Gauss measure on the space of interval exchange transformations. Lyapunov exponents, Ann. Inst. Fourier (Grenoble), Volume 46 (1996), pp. 325-370 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Deviation for interval exchange transformations, Ergodic Theory Dynam. Systems, Volume 17 (1997), pp. 1477-1499 (ISSN: 0143-3857) | DOI | MR | Zbl
Cité par Sources :