Local integrability results in harmonic analysis on reductive groups in large positive characteristic
[Résultats d'intégrabilité locale en analyse harmonique sur des groupes réductifs en grande caractéristique positive]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 6, pp. 1163-1195.

Soit 𝐆 un groupe algébrique réductif connexe au-dessus d'un corps local non archimédien 𝕂, et soit 𝔤 son algèbre de Lie. D'après un théorème de Harish-Chandra, si 𝕂 est de caractéristique zéro, alors les transformés de Fourier d'intégrales orbitales sont représentés, sur l'ensemble des éléments réguliers de 𝔤(𝕂), par des fonctions localement constantes, qui, si on les étend par zéro à tout 𝔤(𝕂), sont localement intégrables. Dans ce papier, nous démontrons que ces fonctions sont en fait des spécialisations de fonctions motiviques constructibles exponentielles. En combinant ceci avec le principe de transfert d'intégrabilité de [8], nous obtenons que le théorème de Harish-Chandra est valable aussi quand 𝕂 est un corps local non archimédien de caractéristique positive suffisamment grande. Sous l'hypothèse que l'application exponentielle feinte existe, ceci implique aussi l'intégrabilité locale des caractères de Harish-Chandra de représentations admissibles de 𝐆(𝕂), où 𝕂 est un corps d'équicaractéristique suffisamment grande (en fonction de la donnée radicielle de 𝐆).

Let 𝐆 be a connected reductive algebraic group over a non-Archimedean local field 𝕂, and let 𝔤 be its Lie algebra. By a theorem of Harish-Chandra, if 𝕂 has characteristic zero, the Fourier transforms of orbital integrals are represented on the set of regular elements in 𝔤(𝕂) by locally constant functions, which, extended by zero to all of 𝔤(𝕂), are locally integrable. In this paper, we prove that these functions are in fact specializations of constructible motivic exponential functions. Combining this with the Transfer Principle for integrability of [8], we obtain that Harish-Chandra's theorem holds also when 𝕂 is a non-Archimedean local field of sufficiently large positive characteristic. Under the hypothesis that mock exponential map exists, this also implies local integrability of Harish-Chandra characters of admissible representations of 𝐆(𝕂), where 𝕂 is an equicharacteristic field of sufficiently large (depending on the root datum of 𝐆) characteristic.

Publié le :
DOI : 10.24033/asens.2236
Classification : 43A80, 22E50; 14E18, 03C99
Keywords: Harish-Chandra characters, orbital integrals, Fourier transform, local integrability, reductive group over a local field.
Mot clés : Caractères de Harish-Chandra, intégrales orbitales, transformés de Fourier, intégrabilité locale, groupes réductifs au-dessus d'un corps local.
@article{ASENS_2014__47_6_1163_0,
     author = {Cluckers, Raf and Gordon, Julia and Halupczok, Immanuel},
     title = {Local integrability results  in harmonic analysis on reductive groups  in large positive characteristic},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1163--1195},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 47},
     number = {6},
     year = {2014},
     doi = {10.24033/asens.2236},
     mrnumber = {3297157},
     zbl = {1315.22010},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2236/}
}
TY  - JOUR
AU  - Cluckers, Raf
AU  - Gordon, Julia
AU  - Halupczok, Immanuel
TI  - Local integrability results  in harmonic analysis on reductive groups  in large positive characteristic
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2014
SP  - 1163
EP  - 1195
VL  - 47
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://archive.numdam.org/articles/10.24033/asens.2236/
DO  - 10.24033/asens.2236
LA  - en
ID  - ASENS_2014__47_6_1163_0
ER  - 
%0 Journal Article
%A Cluckers, Raf
%A Gordon, Julia
%A Halupczok, Immanuel
%T Local integrability results  in harmonic analysis on reductive groups  in large positive characteristic
%J Annales scientifiques de l'École Normale Supérieure
%D 2014
%P 1163-1195
%V 47
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://archive.numdam.org/articles/10.24033/asens.2236/
%R 10.24033/asens.2236
%G en
%F ASENS_2014__47_6_1163_0
Cluckers, Raf; Gordon, Julia; Halupczok, Immanuel. Local integrability results  in harmonic analysis on reductive groups  in large positive characteristic. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 6, pp. 1163-1195. doi : 10.24033/asens.2236. http://archive.numdam.org/articles/10.24033/asens.2236/

Adler, J. D.; DeBacker, S. Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive p-adic group, Michigan Math. J., Volume 50 (2002), pp. 263-286 (ISSN: 0026-2285) | DOI | MR | Zbl

Adler, J. D.; DeBacker, S. Murnaghan-Kirillov theory for supercuspidal representations of tame general linear groups, J. reine angew. Math., Volume 575 (2004), pp. 1-35 (ISSN: 0075-4102) | DOI | MR | Zbl

Adler, J. D.; Korman, J. The local character expansion near a tame, semisimple element, Amer. J. Math., Volume 129 (2007), pp. 381-403 | DOI | MR | Zbl

Adler, J. D.; Roche, A. An intertwining result for p-adic groups, Canad. J. Math., Volume 52 (2000), pp. 449-467 (ISSN: 0008-414X) | DOI | MR | Zbl

Bourbaki, N., Hermann, 1967 (; réimpression Springer, 2007) | Zbl

Cluckers, R.; Cunningham, C.; Gordon, J.; Spice, L. On the computability of some positive-depth supercuspidal characters near the identity, Represent. Theory, Volume 15 (2011), pp. 531-567 | DOI | MR | Zbl

Cluckers, R.; Gordon, J.; Halupczok, I. Integrability of oscillatory functions on local fields: transfer principles (preprint arXiv:1111.4405 ) | MR | Zbl

Cluckers, R.; Hales, T.; Loeser, F. Transfer principle for the Fundamental Lemma, On the Stabilization of the Trace Formula (Clozel, L.; Harris, M.; Labesse, J.-P.; Ngô, B.-C., eds.), International Press of Boston (2011) | MR

Cluckers, R.; Loeser, F. Motivic integration in all residue field characteristics for Henselian discretely valued fields of characteristic zero (to appear in J. reine angew. Math ) | MR

Cluckers, R.; Loeser, F. Ax-Kochen-Eršov theorems for p-adic integrals and motivic integration, Geometric methods in algebra and number theory (Progr. Math.), Volume 235, Birkhäuser (2005), pp. 109-137 | DOI | MR | Zbl

Cluckers, R.; Loeser, F. Constructible motivic functions and motivic integration, Invent. Math., Volume 173 (2008), pp. 23-121 | DOI | MR | Zbl

Cluckers, R.; Loeser, F. Constructible exponential functions, motivic Fourier transform and transfer principle, Ann. of Math., Volume 171 (2010), pp. 1011-1065 | DOI | MR | Zbl

Clozel, L. Characters of nonconnected, reductive p-adic groups, Canad. J. Math., Volume 39 (1987), pp. 149-167 (ISSN: 0008-414X) | DOI | MR | Zbl

DeBacker, S. Homogeneity results for invariant distributions of a reductive p-adic group, Ann. Sci. École Norm. Sup., Volume 35 (2002), pp. 391-422 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

DeBacker, S. Parametrizing nilpotent orbits via Bruhat-Tits theory, Ann. of Math., Volume 156 (2002), pp. 295-332 (ISSN: 0003-486X) | DOI | MR | Zbl

DeBacker, S. Lectures on harmonic analysis for reductive p-adic groups, Representations of real and p-adic groups (Tan, E.-C.; Zhu, C.-B., eds.) (Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore), Volume 2, Singapore Univ. Press (2004), pp. 47-94 | DOI | MR | Zbl

Diwadkar, J. M. Nilpotent conjugacy classes of reductive p-adic Lie algebras and definability in Pas's language (2006) | MR

Denef, J.; Loeser, F. Definable sets, motives and p-adic integrals, J. Amer. Math. Soc, Volume 14 (2001), pp. 429-469 | DOI | MR | Zbl

Gordon, J.; Hales, T. C. Virtual transfer factors, Represent. Theory, Volume 7 (2003), pp. 81-100 | DOI | MR | Zbl

Gross, B. On the motive of a reductive group, Invent. Math., Volume 130 (1997), pp. 287-313 | DOI | MR | Zbl

Gordon, J.; Yaffe, Y., Ottawa lectures on Admissible Representations of reductive p-adic groups (Fields Institute Monograph series), Volume 26, Amer. Math. Soc., Providence, RI; Fields Institute for Research in Mathematical Sciences, Toronto, ON, 2009, pp. 113-150 | MR | Zbl

Hales, T. C. Can p-adic integrals be computed?, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press (2004), pp. 313-329 | MR | Zbl

Harish-Chandra, Springer, 1970 | MR | Zbl

Harish-Chandra A submersion principle and its applications, Geometry and analysis (Proc. Indian Acad. Sci. (Math. Sci.)), Volume 90, Indian Academy of Sciences (1981), pp. 95-102 | MR | Zbl

Harish-Chandra, University Lecture Series, 16, Amer. Math. Soc., 1999, 97 pages (ISBN: 0-8218-2025-7) | MR | Zbl

Howe, R. The Fourier transform and germs of characters (case of GLn over a p-adic field), Math. Ann., Volume 208 (1974), pp. 305-322 (ISSN: 0025-5831) | DOI | MR | Zbl

Kottwitz, R. E., Harmonic analysis, the trace formula, and Shimura varieties (Clay Math. Proc.), Volume 4, Amer. Math. Soc., 2005, pp. 393-522 | MR | Zbl

Laumon, G., Cambridge studies in advanced math., 41, 1996 | MR

Lemaire, B. Intégrabilité locale des caractères tordus de GLN(D) , J. reine angew. Math., Volume 566 (2004), pp. 1-39 | DOI | MR | Zbl

Lemaire, B. Intégrabilité locale des caractères de SLN(D) , Pacific J. Math., Volume 222 (2005), pp. 69-131 | DOI | MR | Zbl

Lemaire, B. Intégrabilité locale des caractères-distributions de GLN(F)F est un corps local non-archimédien de caractéristique quelconque, Compositio Math., Volume 100 (1996), pp. 41-75 | Numdam | MR | Zbl

McNinch, G. Nilpotent orbits over ground fields of good characteristic, Math. Ann., Volume 329 (2004), pp. 49-85 | DOI | MR | Zbl

Moy, A.; Prasad, G. Unrefined minimal K-types for p-adic groups, Invent. Math., Volume 116 (1994), pp. 393-408 (ISSN: 0020-9910) | DOI | MR | Zbl

Ranga Rao, R. Orbital integrals in reductive groups, Ann. of Math., Volume 96 (1972), pp. 505-510 (ISSN: 0003-486X) | DOI | MR | Zbl

Rodier, F. Intégrabilité locale des caractères du groupe GL(n,k)k est un corps local de caractéristique positive, Duke Math. J., Volume 52 (1985), pp. 771-792 (ISSN: 0012-7094) | DOI | MR | Zbl

Springer, T. A., Progress in Math., 9, Birkhäuser, 1998 (ISBN: 0-8176-4021-5) | MR | Zbl

Shin, S. W.; Templier, N. Sato-Tate theorem for families and low-lying zeroes of automorphic L-functions, with appendices by R. Kottwitz and J. Gordon, R. Cluckers and I. Halupczok (preprint arXiv:1208.1945 ) | MR

Waldspurger, J.-L. Endoscopie et changement de caractéristique, J. Inst. Math. Jussieu, Volume 5 (2006), pp. 423-525 | DOI | MR | Zbl

Waldspurger, J.-L. Endoscopie et changement de caractéristique: intégrales orbitales pondérées, Ann. Inst. Fourier, Volume 59 (2009), pp. 1753-1818 | DOI | Numdam | MR | Zbl

Cité par Sources :