Les théorèmes avec conditions de type pour une famille de fonctions de test indexées par les cubes ont été étudiés abondamment dans le cadre de la mesure de Lebesgue. Jusqu'à très récemment, les théorèmes locaux dans les espaces non doublants ont été obtenus sous des conditions invariantes par transformation affine ( ou BMO). Se dispenser de cette invariance complique la tâche. Dans un article précédent, nous avons développé une méthode permettant de surmonter cette difficulté dans un cas modèle de fonctions carrées définies à l'aide de mesures générales. Dans cet article, on s'attaque au cas des opérateurs de Calderón-Zygmund. Plus précisément, on démontre un théorème local dans le cas non doublant avec des conditions de test pour tous les opérateurs de Calderón-Zygmund. Un ingrédient essentiel est le contrôle d'une transformation de martingale tordue qui s'avère subtile dans notre cadre.
Local theorems with type testing conditions have been studied widely in the case of the Lebesgue measure. Such conditions are tied to the scale of the given test function's supporting cube. Until very recently, local theorems in the non-homogeneous case had only been proved assuming scale invariant ( or BMO) testing conditions. Moving past such strong assumptions in non-homogeneous analysis is a key problem. In a previous paper we overcame this obstacle in the model case of square functions defined using general measures. In this paper we finally tackle the very demanding case of Calderón-Zygmund operators. That is, we prove a non-homogeneous local theorem with type testing conditions for all Calderón-Zygmund operators. In doing so we prove general twisted martingale transform inequalities which turn out to be subtle in our general framework.
DOI : 10.24033/asens.2276
Keywords: Calderón-Zygmund operator, non-homogeneous analysis, local $Tb$, $L^2$ test functions.
Mot clés : Opérateurs de Calderón-Zygmund, analyse non doublante, théorèmes $Tb$ locaux, $L^2$ fonctions de test locales.
@article{ASENS_2016__49_1_57_0, author = {Lacey, Michael T. and Martikainen, Henri}, title = {Local $Tb$ theorem with $L^2$ testing conditions and general measures: {Calder\'on-Zygmund} operators}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {57--86}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {1}, year = {2016}, doi = {10.24033/asens.2276}, mrnumber = {3465976}, zbl = {1345.42016}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2276/} }
TY - JOUR AU - Lacey, Michael T. AU - Martikainen, Henri TI - Local $Tb$ theorem with $L^2$ testing conditions and general measures: Calderón-Zygmund operators JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 57 EP - 86 VL - 49 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2276/ DO - 10.24033/asens.2276 LA - en ID - ASENS_2016__49_1_57_0 ER -
%0 Journal Article %A Lacey, Michael T. %A Martikainen, Henri %T Local $Tb$ theorem with $L^2$ testing conditions and general measures: Calderón-Zygmund operators %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 57-86 %V 49 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2276/ %R 10.24033/asens.2276 %G en %F ASENS_2016__49_1_57_0
Lacey, Michael T.; Martikainen, Henri. Local $Tb$ theorem with $L^2$ testing conditions and general measures: Calderón-Zygmund operators. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 57-86. doi : 10.24033/asens.2276. http://archive.numdam.org/articles/10.24033/asens.2276/
Carleson measures, trees, extrapolation, and theorems, Publ. Mat., Volume 46 (2002), pp. 257-325 (ISSN: 0214-1493) | DOI | MR | Zbl
Local theorems and Hardy inequalities, J. Geom. Anal., Volume 23 (2013), pp. 303-374 (ISSN: 1050-6926) | DOI | MR | Zbl
BCR algorithm and the theorem, Publ. Mat., Volume 53 (2009), pp. 179-196 (ISSN: 0214-1493) | DOI | MR | Zbl
A theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., Volume 60/61 (1990), pp. 601-628 (ISSN: 0010-1354) | DOI | MR | Zbl
Weak and strong type estimates for maximal truncations of Calderón-Zygmund operators on weighted spaces, J. Anal. Math., Volume 118 (2012), pp. 177-220 (ISSN: 0021-7670) | DOI | MR | Zbl
On general local theorems, Trans. Amer. Math. Soc., Volume 364 (2012), pp. 4819-4846 (ISSN: 0002-9947) | DOI | MR | Zbl
The local theorem with rough test functions (preprint arXiv:1206.0907 ) | MR
A proof of the local theorem for standard Calderón-Zygmund operators (preprint arXiv:0705.0840 )
, Perspectives in partial differential equations, harmonic analysis and applications (Proc. Sympos. Pure Math.), Volume 79, Amer. Math. Soc., Providence, RI, 2008, pp. 175-185 | DOI | MR | Zbl
Sharp weighted estimates for dyadic shifts and the conjecture, J. reine angew. Math., Volume 687 (2014), pp. 43-86 (ISSN: 0075-4102) | DOI | MR | Zbl
Local theorem with testing conditions and general measures: Square functions (to appear in J. Anal. Math ) | MR
Sharp inequality for Haar shift operators, Math. Ann., Volume 348 (2010), pp. 127-141 (ISSN: 0025-5831) | DOI | MR | Zbl
On the local theorem: a direct proof under duality assumption (to appear in Proc. Edinb. Math. Soc ) | MR
The perfect local theorem and twisted martingale transforms, Proc. Amer. Math. Soc., Volume 142 (2014), pp. 1689-1700 (ISSN: 0002-9939) | DOI | MR | Zbl
Square functions with general measures, Proc. Amer. Math. Soc., Volume 142 (2014), pp. 3923-3931 (ISSN: 0002-9939) | DOI | MR | Zbl
Accretive system -theorems on nonhomogeneous spaces, Duke Math. J., Volume 113 (2002), pp. 259-312 (ISSN: 0012-7094) | DOI | MR | Zbl
The -theorem on non-homogeneous spaces, Acta Math., Volume 190 (2003), pp. 151-239 (ISSN: 0001-5962) | DOI | MR | Zbl
A characterization of two weight norm inequalities for fractional and Poisson integrals, Trans. Amer. Math. Soc., Volume 308 (1988), pp. 533-545 (ISSN: 0002-9947) | DOI | MR | Zbl
Cité par Sources :