Nous avons démontré dans [9], qu'un homéomorphisme symplectique qui laisse invariante une sous-variété coïsotrope
Dans cet article, nous démontrons que l'homéomorphisme ainsi obtenu exhibe certaines propriétés symplectiques. En particulier, dans le cas où la variété symplectique ambiante est un tore et la sous-variété coïsotrope est un sous-tore standard, nous démontrons que l'homéomorphisme réduit préserve les invariants spectraux et donc aussi la capacité spectrale.
Pour démontrer notre résultat principal, nous construisons, à l'aide de l'homologie de Floer lagrangienne, une nouvelle famille d'invariants spectraux qui satisfont un nouveau type d'inégalité triangulaire.
In [9], we proved that symplectic homeomorphisms preserving a coisotropic submanifold
In this article we show that these reduced homeomorphisms continue to exhibit certain symplectic properties. In particular, in the specific setting where the symplectic manifold is a torus and the coisotropic is a standard subtorus, we prove that the reduced homeomorphism preserves spectral invariants and hence the spectral capacity.
To prove our main result, we use Lagrangian Floer theory to construct a new class of spectral invariants which satisfy a non-standard triangle inequality.
DOI : 10.24033/asens.2292
Keywords: Symplectic manifolds, symplectic reduction,
Mot clés : Variétés symplectiques, réduction symplectique, topologie symplectique
@article{ASENS_2016__49_3_633_0, author = {Humili\`ere, Vincent and Leclercq, R\'emi and Seyfaddini, Sobhan}, title = {Reduction of symplectic homeomorphisms}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {633--668}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {3}, year = {2016}, doi = {10.24033/asens.2292}, mrnumber = {3503828}, zbl = {1341.53114}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2292/} }
TY - JOUR AU - Humilière, Vincent AU - Leclercq, Rémi AU - Seyfaddini, Sobhan TI - Reduction of symplectic homeomorphisms JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 633 EP - 668 VL - 49 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2292/ DO - 10.24033/asens.2292 LA - en ID - ASENS_2016__49_3_633_0 ER -
%0 Journal Article %A Humilière, Vincent %A Leclercq, Rémi %A Seyfaddini, Sobhan %T Reduction of symplectic homeomorphisms %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 633-668 %V 49 %N 3 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2292/ %R 10.24033/asens.2292 %G en %F ASENS_2016__49_3_633_0
Humilière, Vincent; Leclercq, Rémi; Seyfaddini, Sobhan. Reduction of symplectic homeomorphisms. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 3, pp. 633-668. doi : 10.24033/asens.2292. https://www.numdam.org/articles/10.24033/asens.2292/
A Lagrangian Piunikhin-Salamon-Schwarz morphism and two comparison homomorphisms in Floer homology, Int. Math. Res. Not., Volume 2008 (2008) (ISSN: 1073-7928) | DOI | MR | Zbl
Floer homology of cotangent bundles and the loop product, Geom. Topol., Volume 14 (2010), pp. 1569-1722 (ISSN: 1465-3060) | DOI | MR | Zbl
A beginner's introduction to Fukaya categories, Contact and symplectic topology (Bourgeois, F. et al., eds.) (Bolyai Soc. Math. Stud.), Volume 26 (2014), pp. 85-136 | DOI | MR | Zbl
, Morse theoretic methods in nonlinear analysis and in symplectic topology (NATO Sci. Ser. II Math. Phys. Chem.), Volume 217, Springer, Dordrecht, 2006, pp. 109-148 | DOI | MR | Zbl
Some quantitative results in
Rigid subsets of symplectic manifolds, Compos. Math., Volume 145 (2009), pp. 773-826 (ISSN: 0010-437X) | DOI | MR | Zbl
Homological Lagrangian monodromy, Geom. Topol., Volume 15 (2011), pp. 1617-1650 (ISSN: 1465-3060) | DOI | MR | Zbl
Coisotropic rigidity and
On some completions of the space of Hamiltonian maps, Bull. Soc. Math. France, Volume 136 (2008), pp. 373-404 (ISSN: 0037-9484) | DOI | Numdam | MR | Zbl
Piunikhin-Salamon-Schwarz isomorphisms for Lagrangian intersections, Differential Geom. Appl., Volume 22 (2005), pp. 215-227 (ISSN: 0926-2245) | DOI | MR | Zbl
Spectral invariants in Lagrangian Floer theory, J. Mod. Dyn., Volume 2 (2008), pp. 249-286 (ISSN: 1930-5311) | DOI | MR | Zbl
The Seidel morphism of Cartesian products, Algebr. Geom. Topol., Volume 9 (2009), pp. 1951-1969 (ISSN: 1472-2747) | DOI | MR | Zbl
Hamiltonian disjunction and limits of Lagrangian submanifolds, Int. Math. Res. Not., Volume 1994 (1994), pp. 161-168 (ISSN: 1073-7928) | DOI | MR | Zbl
Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization, J. Mod. Dyn., Volume 6 (2012), pp. 205-249 | MR | Zbl
Symplectic topology as the geometry of action functional. I. Relative Floer theory on the cotangent bundle, J. Differential Geom., Volume 46 (1997), pp. 499-577 http://projecteuclid.org/getRecord?id=euclid.jdg/1214459976 (ISSN: 0022-040X) | MR | Zbl
The group of Hamiltonian homeomorphisms and
, Contact and symplectic geometry (Cambridge, 1994) (Publ. Newton Inst.), Volume 8, Cambridge Univ. Press, 1996, pp. 171-200 | MR | Zbl
On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math., Volume 193 (2000), pp. 419-461 (ISSN: 0030-8730) | DOI | MR | Zbl
Obstructions to the existence and squeezing of Lagrangian cobordisms, J. Topol. Anal., Volume 2 (2010), pp. 203-232 (ISSN: 1793-5253) | DOI | MR | Zbl
A Lagrangian camel, Comment. Math. Helv., Volume 74 (1999), pp. 591-614 (ISSN: 0010-2571) | DOI | MR | Zbl
Symplectic topology as the geometry of generating functions, Math. Annalen, Volume 292 (1992), pp. 685-710 | DOI | MR | Zbl
On the Hofer geometry for weakly exact Lagrangian submanifolds, J. Symplectic Geom., Volume 11 (2013), pp. 475-488 http://projecteuclid.org/euclid.jsg/1384282845 (ISSN: 1527-5256) | DOI | MR | Zbl
Cité par Sources :