Nous donnons une version analytique du théorème d'injectivité en utilisant les idéaux multiplicateurs, et démontrons des théorèmes d'extension pour le faisceau adjoint d'une paire dlt. De plus nous obtenons des résultats de semi-amplitude liés à la conjecture d'abondance en géométrie birationnelle et la conjecture de semi-amplitude pour les variétés hyperkählériennes.
We give an analytic version of the injectivity theorem by using multiplier ideal sheaves of singular hermitian metrics, and prove extension theorems for the log canonical bundle of dlt pairs. Moreover we obtain partial results related to the abundance conjecture in birational geometry and the semi-ampleness conjecture for hyperKähler manifolds.
DOI : 10.24033/asens.2325
Keywords: Injectivity theorem, extension theorem, abundance conjecture.
Mot clés : Théorème d'injectivité, théorème d'extension, conjecture d'abondance.
@article{ASENS_2017__50_2_479_0, author = {Gongyo, Yoshinori and ichi Matsumura, Shin}, title = {Versions of injectivity and extension theorems}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {479--502}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {2}, year = {2017}, doi = {10.24033/asens.2325}, mrnumber = {3621435}, zbl = {1401.14083}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2325/} }
TY - JOUR AU - Gongyo, Yoshinori AU - ichi Matsumura, Shin TI - Versions of injectivity and extension theorems JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 479 EP - 502 VL - 50 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2325/ DO - 10.24033/asens.2325 LA - en ID - ASENS_2017__50_2_479_0 ER -
%0 Journal Article %A Gongyo, Yoshinori %A ichi Matsumura, Shin %T Versions of injectivity and extension theorems %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 479-502 %V 50 %N 2 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2325/ %R 10.24033/asens.2325 %G en %F ASENS_2017__50_2_479_0
Gongyo, Yoshinori; ichi Matsumura, Shin. Versions of injectivity and extension theorems. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 2, pp. 479-502. doi : 10.24033/asens.2325. https://www.numdam.org/articles/10.24033/asens.2325/
Characteristic foliation on non-uniruled smooth divisors on projective hyperkaehler manifolds (preprint arXiv:1405.0539 ) | MR
Quasi-log varieties, Tr. Mat. Inst. Steklova, Volume 240 (2003), pp. 220-239 (ISSN: 0371-9685) | MR | Zbl
An injectivity theorem, Compos. math., Volume 150 (2014), pp. 999-1023 (ISSN: 0010-437X) | DOI | MR | Zbl
Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010), pp. 405-468 (ISSN: 0894-0347) | DOI | MR | Zbl
Non-algebraic hyperkähler manifolds, J. Differential Geom., Volume 85 (2010), pp. 397-424 http://projecteuclid.org/euclid.jdg/1292940689 (ISSN: 0022-040X) | MR | Zbl
, Surveys of Modern Mathematics, 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012, 231 pages (ISBN: 978-1-57146-234-3) | MR | Zbl
Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992), pp. 361-409 (ISSN: 1056-3911) | MR | Zbl
Extension theorems, non-vanishing and the existence of good minimal models, Acta Math., Volume 210 (2013), pp. 203-259 (ISSN: 0001-5962) | DOI | MR | Zbl
Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math., Volume 12 (2001), pp. 689-741 (ISSN: 0129-167X) | DOI | MR | Zbl
, Einstein metrics and Yang-Mills connections (Sanda, 1990) (Lecture Notes in Pure and Appl. Math.), Volume 145, Dekker, New York, 1993, pp. 59-68 | MR | Zbl
, DMV Seminar, 20, Birkhäuser, 1992, 164 pages (ISBN: 3-7643-2822-3) | DOI | MR | Zbl
Log pluricanonical representations and the abundance conjecture, Compos. math., Volume 150 (2014), pp. 593-620 (ISSN: 0010-437X) | DOI | MR | Zbl
Introduction to the log minimal model program for log canonical pairs (preprint arXiv:0907.1506 ) | MR
On semipositivity, injectivity, and vanishing theorems (preprint arXiv:1503.0650 ) | MR
Abundance theorem for semi log canonical threefolds, Duke Math. J., Volume 102 (2000), pp. 513-532 (ISSN: 0012-7094) | DOI | MR | Zbl
, Flips for 3-folds and 4-folds (Oxford Lecture Ser. Math. Appl.), Volume 35, Oxford Univ. Press, Oxford, 2007, pp. 49-62 | DOI | MR | Zbl
Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci., Volume 47 (2011), pp. 727-789 (ISSN: 0034-5318) | DOI | MR | Zbl
Semi-stable minimal model program for varieties with trivial canonical divisor, Proc. Japan Acad. Ser. A Math. Sci., Volume 87 (2011), pp. 25-30 http://projecteuclid.org/euclid.pja/1299161391 (ISSN: 0386-2194) | DOI | MR | Zbl
A transcendental approach to Kollár's injectivity theorem, Osaka J. Math., Volume 49 (2012), pp. 833-852 http://projecteuclid.org/euclid.ojm/1350306598 (ISSN: 0030-6126) | MR | Zbl
Foundation of the minimal model program (2014) (preprint https://www.math.kyoto-u.ac.jp/~fujino/foundation1.pdf ) | MR
Reduction maps and minimal model theory, Compos. math., Volume 149 (2013), pp. 295-308 (ISSN: 0010-437X) | DOI | MR | Zbl
, Algebraic geometry in east Asia—Taipei 2011 (Adv. Stud. Pure Math.), Volume 65, Math. Soc. Japan, Tokyo, 2015, pp. 107-116 | DOI | MR | Zbl
ACC for log canonical thresholds, Ann. of Math., Volume 180 (2014), pp. 523-571 (ISSN: 0003-486X) | DOI | MR | Zbl
On Finiteness of B-representations and Semi-log Canonical Abundance (preprint arXiv:1107.4149 ) | MR
Pluricanonical systems on minimal algebraic varieties, Invent. math., Volume 79 (1985), pp. 567-588 (ISSN: 0020-9910) | DOI | MR | Zbl
Abundance theorem for minimal threefolds, Invent. math., Volume 108 (1992), pp. 229-246 (ISSN: 0020-9910) | DOI | MR | Zbl
Log canonical singularities are Du Bois, J. Amer. Math. Soc., Volume 23 (2010), pp. 791-813 (ISSN: 0894-0347) | DOI | MR | Zbl
, Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, Cambridge, 1998, 254 pages (ISBN: 0-521-63277-3) | DOI | MR | Zbl
, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 283-360 | DOI | MR | Zbl
Log abundance theorem for threefolds, Duke Math. J., Volume 75 (1994), pp. 99-119 (ISSN: 0012-7094) | DOI | MR | Zbl
Higher direct images of dualizing sheaves. I, Ann. of Math., Volume 123 (1986), pp. 11-42 (ISSN: 0003-486X) | DOI | MR | Zbl
Adjunction and discrepancies, Flips and Abundance for algebraic threefolds, Astérisque, Volume 211 (1992), pp. 183-192 | Zbl
Abundance for varieties with many differential forms (preprint arXiv:1601.01602 ) | MR
An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities (preprint arXiv:1308.2033, to appear in J. Alg. Geom ) | MR
A Nadel vanishing theorem via injectivity theorems, Math. Ann., Volume 359 (2014), pp. 785-802 (ISSN: 0025-5831) | DOI | MR | Zbl
A Nadel vanishing theorem for metrics with minimal singularities on big line bundles, Adv. Math., Volume 280 (2015), pp. 188-207 (ISSN: 0001-8708) | DOI | MR | Zbl
, Complex analysis and geometry (Springer Proc. Math. Stat.), Volume 144, Springer, Tokyo, 2015, pp. 241-255 | DOI | MR | Zbl
, MSJ Memoirs, 14, Mathematical Society of Japan, Tokyo, 2004, 277 pages (ISBN: 4-931469-31-0) | MR | Zbl
On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type, Publ. Res. Inst. Math. Sci., Volume 41 (2005), pp. 565-577 http://projecteuclid.org/euclid.prims/1145475223 (ISSN: 0034-5318) | DOI | MR | Zbl
Hyperkähler SYZ conjecture and semipositive line bundles, Geom. Funct. Anal., Volume 19 (2010), pp. 1481-1493 (ISSN: 1016-443X) | DOI | MR | Zbl
- An application of adjoint ideal sheaves to injectivity and extension theorems, Convex and Complex: Perspectives on Positivity in Geometry, Volume 810 (2025), p. 83 | DOI:10.1090/conm/810/16208
- EXTENSION OF COHOMOLOGY CLASSES FOR VECTOR BUNDLES WITH SINGULAR HERMITIAN METRICS, Nagoya Mathematical Journal (2025), p. 1 | DOI:10.1017/nmj.2025.9
- Converse of
Existence and Extension of Cohomology Classes, The Bergman Kernel and Related Topics, Volume 447 (2024), p. 357 | DOI:10.1007/978-981-99-9506-6_15 - Some Kollár–Enoki Type Injectivity Theorems on Compact Kähler Manifolds, The Journal of Geometric Analysis, Volume 34 (2024) no. 1 | DOI:10.1007/s12220-023-01441-4
- Injectivity theorems for higher direct images under proper Kähler morphisms on snc spaces, arXiv (2024) | DOI:10.48550/arxiv.2409.14100 | arXiv:2409.14100
- On an injectivity theorem for log-canonical pairs with analytic adjoint ideal sheaves, Transactions of the American Mathematical Society (2023) | DOI:10.1090/tran/8935
- An injectivity theorem on snc compact Kähler spaces: an application of the theory of harmonic integrals on log-canonical centers via adjoint ideal sheaves, arXiv (2023) | DOI:10.48550/arxiv.2307.12025 | arXiv:2307.12025
- An application of adjoint ideal sheaves to injectivity and extension theorems, arXiv (2023) | DOI:10.48550/arxiv.2306.00670 | arXiv:2306.00670
- Extension with log-canonical measures and an improvement to the plt extension of Demailly–Hacon–Păun, Mathematische Annalen, Volume 383 (2022) no. 3-4, p. 943 | DOI:10.1007/s00208-021-02152-3
- L2 Extensions with Singular Metrics on Kähler Manifolds, Acta Mathematica Scientia, Volume 41 (2021) no. 6, p. 2021 | DOI:10.1007/s10473-021-0614-2
- Extension of cohomology classes and holomorphic sections defined on subvarieties, Journal of Algebraic Geometry, Volume 31 (2021) no. 1, p. 137 | DOI:10.1090/jag/766
- The Injectivity Theorem on a Non-Compact Kähler Manifold, Symmetry, Volume 13 (2021) no. 11, p. 2222 | DOI:10.3390/sym13112222
- Injectivity theorem for pseudo-effective line bundles and its applications, Transactions of the American Mathematical Society, Series B, Volume 8 (2021) no. 27, p. 849 | DOI:10.1090/btran/86
- A Kollár-type vanishing theorem, Mathematische Zeitschrift, Volume 295 (2020) no. 1-2, p. 331 | DOI:10.1007/s00209-019-02406-6
- On Generalised Abundance, II, Peking Mathematical Journal, Volume 3 (2020) no. 1, p. 1 | DOI:10.1007/s42543-019-00022-1
- An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities, Journal of Algebraic Geometry, Volume 27 (2017) no. 2, p. 305 | DOI:10.1090/jag/687
- Injectivity theorems with multiplier ideal sheaves for higher direct images under K"ahler morphisms, arXiv (2016) | DOI:10.48550/arxiv.1607.05554 | arXiv:1607.05554
- The Morrison-Kawamata Cone Conjecture and Abundance on Ricci flat manifolds, arXiv (2016) | DOI:10.48550/arxiv.1611.00556 | arXiv:1611.00556
- A transcendental approach to injectivity theorem for log canonical pairs, arXiv (2016) | DOI:10.48550/arxiv.1607.07213 | arXiv:1607.07213
- On semipositivity, injectivity and vanishing theorems, arXiv (2015) | DOI:10.48550/arxiv.1503.06503 | arXiv:1503.06503
- Injectivity theorems with multiplier ideal sheaves and their applications, arXiv (2015) | DOI:10.48550/arxiv.1511.04226 | arXiv:1511.04226
- An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities, arXiv (2013) | DOI:10.48550/arxiv.1308.2033 | arXiv:1308.2033
- A Nadel vanishing theorem for metrics with minimal singularities on big line bundles, arXiv (2013) | DOI:10.48550/arxiv.1306.2497 | arXiv:1306.2497
Cité par 23 documents. Sources : Crossref, NASA ADS