Nous montrons que tout champ de vecteurs en dimension trois peut être accumulé en topologie ou bien par un champ Morse-Smale, ou bien par un champ possédant une intersection homocline transverse associée à une orbite périodique hyperbolique. Contrairement au cas des difféomorphismes [14], la principale difficulté ici consiste à traiter les singularités. Nous progressons également en direction d'une autre conjecture de Palis.
We prove that every three-dimensional vector field can be accumulated by Morse-Smale ones, or by ones with a transverse homoclinic intersection of some hyperbolic periodic orbit. In contrast to the case of diffeomorphisms [14], the main difficulty here is that we need to deal with singularities. We also make progress on another conjecture related to Palis in this paper.
Keywords: Morse-Smale system, horseshoe, vector field, singularity.
Mot clés : Système de Morse-Smale, fer-à-cheval, champ de vecteurs, singularité.
@article{ASENS_2018__51_1_39_0, author = {Gan, Shaobo and Yang, Dawei}, title = {Morse-Smale systems and horseshoes for three dimensional singular flows}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {39--112}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {1}, year = {2018}, doi = {10.24033/asens.2351}, mrnumber = {3764038}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2351/} }
TY - JOUR AU - Gan, Shaobo AU - Yang, Dawei TI - Morse-Smale systems and horseshoes for three dimensional singular flows JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 39 EP - 112 VL - 51 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2351/ DO - 10.24033/asens.2351 LA - en ID - ASENS_2018__51_1_39_0 ER -
%0 Journal Article %A Gan, Shaobo %A Yang, Dawei %T Morse-Smale systems and horseshoes for three dimensional singular flows %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 39-112 %V 51 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2351/ %R 10.24033/asens.2351 %G en %F ASENS_2018__51_1_39_0
Gan, Shaobo; Yang, Dawei. Morse-Smale systems and horseshoes for three dimensional singular flows. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 1, pp. 39-112. doi : 10.24033/asens.2351. http://archive.numdam.org/articles/10.24033/asens.2351/
The origin and structure of the Lorenz attractor, Dokl. Akad. Nauk SSSR, Volume 234 (1977), pp. 336-339 (ISSN: 0002-3264) | MR | Zbl
, Mathematical events of the twentieth century, Springer, Berlin, 2006, pp. 1-17 | MR | Zbl
Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 20 (2003), pp. 805-841 (ISSN: 0294-1449) | DOI | Numdam | MR | Zbl
Création de connexions en topologie , Ergodic Theory Dynam. Systems, Volume 21 (2001), pp. 339-381 (ISSN: 0143-3857) | DOI | MR | Zbl
Récurrence et généricité, Invent. math., Volume 158 (2004), pp. 33-104 (ISSN: 0020-9910) | DOI | MR | Zbl
A -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources, Ann. of Math., Volume 158 (2003), pp. 355-418 (ISSN: 0003-486X) | DOI | MR | Zbl
, Encyclopaedia of Math. Sciences, 102, Springer, Berlin, 2005, 384 pages (ISBN: 3-540-22066-6) | MR | Zbl
Perturbations of the derivative along periodic orbits, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 1307-1337 (ISSN: 0143-3857) | DOI | MR | Zbl
On the existence of non-trivial homoclinic classes, Ergodic Theory Dynam. Systems, Volume 27 (2007), pp. 1473-1508 (ISSN: 0143-3857) | DOI | MR | Zbl
Dominated chain recurrent class with singularities, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 14 (2015), pp. 83-99 (ISSN: 0391-173X) | MR
Nouvelles recherches sur les systèmes dynamiques, Mem. Pont. Acad. Sci. Nov. Lyncaei, Volume 53 (1935), pp. 85-216 | JFM | Zbl
, CBMS Regional Conference Series in Mathematics, 38, Amer. Math. Soc., Providence, R.I., 1978, 89 pages (ISBN: 0-8218-1688-8) | MR | Zbl
Periodic orbits and chain-transitive sets of -diffeomorphisms, Publ. Math. IHÉS, Volume 104 (2006), pp. 87-141 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Birth of homoclinic intersections: a model for the central dynamics of partially hyperbolic systems, Ann. of Math., Volume 172 (2010), pp. 1641-1677 (ISSN: 0003-486X) | DOI | MR | Zbl
Partial hyperbolicity and homoclinic tangencies, J. Eur. Math. Soc. (JEMS), Volume 17 (2015), pp. 1-49 (ISSN: 1435-9855) | DOI | MR
Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc., Volume 158 (1971), pp. 301-308 (ISSN: 0002-9947) | DOI | MR | Zbl
A strange, strange attractor, The Hopf bifurcation theorems and its applications (Applied Mathematical Series), Volume 19 (1976), pp. 368-381 | DOI
Structural stability of Lorenz attractors, Publ. Math. IHÉS, Volume 50 (1979), pp. 59-72 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Connecting invariant manifolds and the solution of the stability and -stability conjectures for flows, Ann. of Math., Volume 145 (1997), pp. 81-137 (ISSN: 0003-486X) | DOI | MR | Zbl
, Lecture Notes in Math., 583, Springer, Berlin-New York, 1977, 149 pages | MR | Zbl
Contribution à la théorie des champs génériques, Contributions to Differential Equations, Volume 2 (1963), pp. 457-484 | MR | Zbl
Addendum et corrections au mémoire: “Contributions à la théorie des champs génériques”, Contributions to Differential Equations, Volume 3 (1964), pp. 411-420 | MR | Zbl
Robustly transitive singular sets via approach of an extended linear Poincaré flow, Discrete Contin. Dyn. Syst., Volume 13 (2005), pp. 239-269 (ISSN: 1078-0947) | DOI | MR | Zbl
A basic property of a certain class of differential systems, Acta Math. Sinica, Volume 22 (1979), pp. 316-343 (ISSN: 0583-1431) | MR | Zbl
On the stability conjecture, Chinese Ann. Math., Volume 1 (1980), pp. 9-30 | MR | Zbl
Obstruction sets. II, Beijing Daxue Xuebao, Volume 2 (1981), pp. 1-36 | MR
Some uniformity properties of ordinary differential systems and a generalization of an existence theorem for periodic orbits, Beijing Daxue Xuebao, Volume 2 (1985), pp. 1-19 (ISSN: 0479-8023) | MR
On -contractible orbits of vector fields, Systems Sci. Math. Sci., Volume 2 (1989), pp. 193-227 (ISSN: 1000-9590) | MR | Zbl
Deterministic nonperiodic flow, J. Atmosph. Sci., Volume 20 (1963), pp. 130-141 | DOI | MR
An ergodic closing lemma, Ann. of Math., Volume 116 (1982), pp. 503-540 (ISSN: 0003-486X) | DOI | MR | Zbl
A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems, Volume 23 (2003), pp. 1575-1600 (ISSN: 0143-3857) | DOI | MR | Zbl
On robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris Sér. I Math., Volume 326 (1998), pp. 81-86 (ISSN: 0764-4442) | MR | Zbl
Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math., Volume 160 (2004), pp. 375-432 (ISSN: 0003-486X) | DOI | MR | Zbl
, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 191-202 | MR | Zbl
Diffeomorphisms with infinitely many sinks, Topology, Volume 13 (1974), pp. 9-18 (ISSN: 0040-9383) | DOI | MR | Zbl
The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ. Math. IHÉS, Volume 50 (1979), pp. 101-151 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
A weak equivalence and topological entropy, Publ. Res. Inst. Math. Sci., Volume 16 (1980), pp. 289-298 (ISSN: 0034-5318) | DOI | MR | Zbl
A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque, Volume 261 (2000), pp. 335-347 (ISSN: 0303-1179) | Numdam | MR | Zbl
A global perspective for non-conservative dynamics, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 22 (2005), pp. 485-507 (ISSN: 0294-1449) | DOI | Numdam | MR
Open questions leading to a global perspective in dynamics, Nonlinearity, Volume 21 (2008), pp. 37-43 (ISSN: 0951-7715) | DOI | MR | Zbl
On the -stability conjecture, Publ. Math. IHÉS, Volume 66 (1988), pp. 211-215 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
, Dynamical systems and related topics (Nagoya, 1990) (Adv. Ser. Dynam. Systems), Volume 9, World Sci. Publ., River Edge, NJ, 1991, pp. 466-472 | MR
Structural stability on two-dimensional manifolds, Topology, Volume 1 (1962), pp. 101-120 (ISSN: 0040-9383) | DOI | MR | Zbl
Sur le problème des trois corps et les équations de la dynamique, Acta Math., Volume 13 (1890), pp. 1-270 | JFM
Homoclinic tangencies and hyperbolicity for surface diffeomorphisms, Ann. of Math., Volume 151 (2000), pp. 961-1023 (ISSN: 0003-486X) | DOI | MR | Zbl
Stable manifolds for differential equations and diffeomorphisms, Ann. Scuola Norm. Sup. Pisa, Volume 17 (1963), pp. 97-116 | Numdam | MR | Zbl
, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 63-80 | DOI | MR | Zbl
, From Topology to Computation: Proceedings of the Smalefest (Berkeley, CA, 1990), Springer, New York, 1993, pp. 22-26 | DOI | MR
Topological entropies of equivalent smooth flows, Trans. Amer. Math. Soc., Volume 361 (2009), pp. 3071-3082 (ISSN: 0002-9947) | DOI | MR | Zbl
Topological entropy of fixed-point free flows, Trans. Amer. Math. Soc., Volume 319 (1990), pp. 601-618 (ISSN: 0002-9947) | DOI | MR | Zbl
Homoclinic tangencies and dominated splittings, Nonlinearity, Volume 15 (2002), pp. 1445-1469 (ISSN: 0951-7715) | DOI | MR | Zbl
Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles, Bull. Braz. Math. Soc. (N.S.), Volume 35 (2004), pp. 419-452 (ISSN: 1678-7544) | DOI | MR | Zbl
The selecting lemma of Liao, Discrete Contin. Dyn. Syst., Volume 20 (2008), pp. 159-175 (ISSN: 1078-0947) | DOI | MR | Zbl
On the stability conjecture for flows, J. Differential Equations, Volume 129 (1996), pp. 334-357 (ISSN: 0022-0396) | DOI | MR | Zbl
connecting lemmas, Trans. Amer. Math. Soc., Volume 352 (2000), pp. 5213-5230 (ISSN: 0002-9947) | DOI | MR | Zbl
Kupka-Smale Theorem with obstacle (2005) (in Chinese)
On the finiteness of uniform sinks, J. Differential Equations, Volume 257 (2014), pp. 2102-2114 (ISSN: 0022-0396) | DOI | MR | Zbl
Cité par Sources :