Par les travaux de Yu, Kim et Hakim-Murnaghan, on a une paramétrisation et une construction de toutes les représentations supercuspidales d'un groupe réductif -adique en termes de données supercuspidales, quand est suffisamment grand. Dans cet article, nous définirons une correspondance entre les données supercuspidales par l'intermédiaire d'applications moments et de correspondances thêta sur des corps finis. Ensuite, nous montrerons que les correspondances thêta locales entre les représentations supercuspidales sont complètement décrites par cette notion. Dans l'Appendice B, nous fournissons une courte démonstration d'un résultat de Pan sur la « préservation de la profondeur ».
By the works of Yu, Kim and Hakim-Murnaghan, we have a parameterization and construction of all supercuspidal representations of a reductive -adic group in terms of supercuspidal data, when is sufficiently large. In this paper, we will define a correspondence of supercuspidal data via moment maps and theta correspondences over finite fields. Then we will show that local theta correspondences between supercuspidal representations are completely described by this notion. In Appendix B, we give a short proof of a result of Pan on “depth preservation”.
Keywords: Local theta correspondence, moment maps, supercuspidal representations.
Mot clés : Correspondances thêta locales, application moment, représentations supercuspidales.
@article{ASENS_2018__51_4_927_0, author = {Loke, Hung Yean and Ma, Jia-Jun}, title = {Local theta correspondences between supercuspidal representations}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {927--991}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {4}, year = {2018}, doi = {10.24033/asens.2369}, mrnumber = {3861566}, zbl = {1418.22009}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2369/} }
TY - JOUR AU - Loke, Hung Yean AU - Ma, Jia-Jun TI - Local theta correspondences between supercuspidal representations JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 927 EP - 991 VL - 51 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2369/ DO - 10.24033/asens.2369 LA - en ID - ASENS_2018__51_4_927_0 ER -
%0 Journal Article %A Loke, Hung Yean %A Ma, Jia-Jun %T Local theta correspondences between supercuspidal representations %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 927-991 %V 51 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2369/ %R 10.24033/asens.2369 %G en %F ASENS_2018__51_4_927_0
Loke, Hung Yean; Ma, Jia-Jun. Local theta correspondences between supercuspidal representations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 4, pp. 927-991. doi : 10.24033/asens.2369. http://archive.numdam.org/articles/10.24033/asens.2369/
Some applications of Bruhat-Tits theory to harmonic analysis on the Lie algebra of a reductive -adic group, Michigan Math. J., Volume 50 (2002), pp. 263-286 | DOI | MR | Zbl
Conservation de la ramification modérée par la correspondance de Howe, Bull. Soc. Math. France, Volume 117 (1989), pp. 297-303 | DOI | Numdam | MR | Zbl
, 129, Princeton Univ. Press, 1993 | MR | Zbl
Buildings of classical groups and centralizers of Lie algebra elements, Journal of Lie Theory, Volume 19 (2009), pp. 55-78 | MR | Zbl
Schémas en groupes et immeubles des groupes classiques sur un corps local, II. Groupes unitaires, Bull. Math. Soc. France, Volume 115 (1987), pp. 141-195 | DOI | Numdam | MR | Zbl
Parametrizing nilpotent orbits via Bruhat-Tits theory, Ann. of math., Volume 156 (2002), pp. 295-332 | DOI | MR | Zbl
, Springer, 1963 |Depth-zero supercuspidal -packets and their stability, Ann. of math., Volume 169 (2009), pp. 795-901 | DOI | MR | Zbl
Weil representations associated to finite fields, J. of Algebra, Volume 46 (1977), pp. 54-101 | DOI | MR | Zbl
Tame Types of Nonlinear Covering Groups (in preparation)
Distinguished Tame Supercuspidal Representations, Int. Math. Res. Pap., Volume 2008 (2008) | MR | Zbl
, CBMS Regional Conference Series in Mathematics, 59, Amer. Math. Soc., 1985 | MR | Zbl
Tamely ramified supercuspidal representations of , Pacific J. Math., Volume 73 (1973), pp. 437-460 http://projecteuclid.org/euclid.pjm/1102810618 | DOI | MR | Zbl
-series and invariant theory, Automorphic Forms, Representations and -functions (Proc. Symp. Pure Math), Volume 33 (1979), pp. 275-285 | DOI | MR | Zbl
Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (Piatetski-Shapiro, I. et al., eds.) (Isr. Math. Conf. Proc.), Volume 8, Ramat-Gan: Bar-Ilan University (1995), pp. 1-182 | MR | Zbl
Depth-Zero Representations of Nonlinear Covers of -Adic Groups, Int. Math. Res. Not., Volume 21 (2009), pp. 3979-3995 | DOI | MR | Zbl
Supercuspidal Representations: An Exhaustion Theorem, J. Amer. Math. Soc., Volume 20 (2007), pp. pp. 273-320 | DOI | MR | Zbl
Character Expansions and Unrefined Minimal -Types, Amer. J. Math., Volume 125 (2003), pp. pp. 1199-1234 | DOI | MR | Zbl
-types and -asymptotic expansions, J. reine angew. Math., Volume 592 (2006), pp. 189-236 | DOI | MR | Zbl
Minimal representations and reductive dual pairs, Proceedings of Representation theory of Lie groups, Park City, UT, 1998 (IAS/Park City Math. Ser.), Volume 8, Amer. Math. Soc. (2000), pp. 293-340 | MR | Zbl
Singular unitary representations of classical groups, Invent. math., Volume 97 (1989), pp. 237-255 | DOI | MR | Zbl
Local theta correspondences between epipelagic supercuspidal representations, Math. Z., Volume 283, pp. 169-196 | DOI | MR | Zbl
Unrefined minimal K-types for p-adic groups, Invent. math., Volume 116 (1994), pp. 393-408 | DOI | MR | Zbl
Jacquet functors and unrefined minimal -types, Comment. Math. Helvetici, Volume 71 (1996) | MR | Zbl
, Lecture Notes in Math., 1291, Springer | MR | Zbl
Supercuspidal Representations and Theta Correspondence (preprint http://ir.lib.nthu.edu.tw/handle/987654321/52348 )
Splittings of the metaplectic covers of some reductive dual pairs, Pacific J. Math., Volume 199 (2001), pp. 163-226 | DOI | MR | Zbl
Depth preservation in local theta correspondence, Duke Math. J., Volume 113 (2002), pp. 531-592 | DOI | MR | Zbl
Local theta correspondence of depth zero representations and theta dichotomy, J. Math. Soc. Japan, Volume 54 (2002), pp. 793-845 | DOI | MR | Zbl
Local theta correspondence and minimal -types of positive depth, Israel J. Math., Volume 138 (2003), pp. 317-352 | DOI | MR | Zbl
Supercuspidal representations and preservation principle of theta correspondence, J. reine angew. Math. (2016) | DOI | MR | Zbl
Intertwining and Supercuspidal Types for -adic Classical Groups, Proc. London Math. Soc., Volume 83 (2001), pp. 120-140 | DOI | MR | Zbl
Semisimple characters for p-adic classical groups, Duke Math. J., Volume 127 (2005), pp. 123-173 | DOI | MR | Zbl
The supercuspidal representations of p-adic classical groups, Invent. math., Volume 172 (2008), pp. 289-352 | DOI | MR | Zbl
Conservation relations for local theta correspondence, J. Amer. Math. Soc, Volume 28 (2015), pp. 939-983 | DOI | MR | Zbl
Démonstration d'une conjecture de dualité de Howe dans le cas -adique, , Israel Math. Conf. Proc., Volume 2 (1990), pp. 267-324 | MR | Zbl
Construction of tame supercuspidal representations, J. Amer. Math. Soc., Volume 14 (2001), pp. 579-622 | DOI | MR | Zbl
Bruhat-Tits Theory and Buildings, Ottawa lectures on admissible representations of reductive -adic groups, Volume 26, Amer. Math. Soc. (2009) | MR | Zbl
Cité par Sources :