Nous étudions le système d'Euler des gaz isentropiques, pour une loi de pression en
We study the stochastically forced system of isentropic Euler equations of gas dynamics with a
Keywords: Stochastic partial differential equations, isentropic Euler equations, entropy solutions.
Mot clés : Équations aux dérivées partielles stochastiques, système d'Euler isentropique, solutions entropiques.
@article{ASENS_2019__52_1_181_0, author = {Berthelin, Florent and Vovelle, Julien}, title = {Stochastic isentropic {Euler} equations}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {181--254}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {1}, year = {2019}, doi = {10.24033/asens.2386}, mrnumber = {3940909}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2386/} }
TY - JOUR AU - Berthelin, Florent AU - Vovelle, Julien TI - Stochastic isentropic Euler equations JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 181 EP - 254 VL - 52 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2386/ DO - 10.24033/asens.2386 LA - en ID - ASENS_2019__52_1_181_0 ER -
%0 Journal Article %A Berthelin, Florent %A Vovelle, Julien %T Stochastic isentropic Euler equations %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 181-254 %V 52 %N 1 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2386/ %R 10.24033/asens.2386 %G en %F ASENS_2019__52_1_181_0
Berthelin, Florent; Vovelle, Julien. Stochastic isentropic Euler equations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 1, pp. 181-254. doi : 10.24033/asens.2386. https://www.numdam.org/articles/10.24033/asens.2386/
, CEMRACS 2013—modelling and simulation of complex systems: stochastic and deterministic approaches (ESAIM Proc. Surveys), Volume 48, EDP Sciences, 2015, pp. 321-340 | DOI | MR
, MPS/SIAM Series on Optimization, 6, Society for Industrial and Applied Mathematics (SIAM); Mathematical Programming Society (MPS), 2006, 634 pages (ISBN: 0-89871-600-4) | MR | Zbl
Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc., Volume 63 (1977), pp. 370-373 (ISSN: 0002-9939) | DOI | MR | Zbl
Stochastic weak attractor for a dissipative Euler equation, Electron. J. Probab., Volume 5 (2000) (ISSN: 1083-6489) | DOI | MR | Zbl
, Seminar on Stochastic Analysis, Random Fields and Applications V (Progr. Probab.), Volume 59, Birkhäuser, 2008, pp. 23-36 | DOI | MR | Zbl
Martingale solutions for stochastic Euler equations, Stochastic Anal. Appl., Volume 17 (1999), pp. 713-725 (ISSN: 0736-2994) | DOI | MR | Zbl
2-D Euler equation perturbed by noise, NoDEA Nonlinear Differential Equations Appl., Volume 6 (1999), pp. 35-54 (ISSN: 1021-9722) | DOI | MR | Zbl
Incompressible limit for compressible fluids with stochastic forcing, Arch. Ration. Mech. Anal., Volume 222 (2016), pp. 895-926 (ISSN: 0003-9527) | DOI | MR
Existence and uniqueness for stochastic 2d Euler flows with bounded vorticity (preprint arXiv:1401.5938 ) | MR
Stochastic Navier-Stokes equations for compressible fluids, Indiana Univ. Math. J., Volume 65 (2016), pp. 1183-1250 (ISSN: 0022-2518) | DOI | MR
, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, 1999, 277 pages (ISBN: 0-471-19745-9) | DOI | MR | Zbl
Weak solutions to stochastic wave equations with values in Riemannian manifolds, Comm. Partial Differential Equations, Volume 36 (2011), pp. 1624-1653 (ISSN: 0360-5302) | DOI | MR | Zbl
Stochastic two dimensional Euler equations, Ann. Probab., Volume 29 (2001), pp. 1796-1832 (ISSN: 0091-1798) | DOI | MR | Zbl
Optimal relaxed control of dissipative stochastic partial differential equations in Banach spaces, SIAM J. Control Optim., Volume 51 (2013), pp. 2664-2703 (ISSN: 0363-0129) | DOI | MR | Zbl
The Cauchy problem for conservation laws with a multiplicative stochastic perturbation, J. Hyperbolic Differ. Equ., Volume 9 (2012), pp. 661-709 (ISSN: 0219-8916) | DOI | MR | Zbl
Stochastic Euler equations on the torus, Ann. Appl. Probab., Volume 9 (1999), pp. 688-705 (ISSN: 1050-5164) | DOI | MR | Zbl
Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., Volume 26 (1977), pp. 373-392 (ISSN: 0022-2518) | DOI | MR | Zbl
On nonlinear stochastic balance laws, Arch. Ration. Mech. Anal., Volume 204 (2012), pp. 707-743 (ISSN: 0003-9527) | DOI | MR | Zbl
Decay of entropy solutions of nonlinear conservation laws, Arch. Ration. Mech. Anal., Volume 146 (1999), pp. 95-127 (ISSN: 0003-9527) | DOI | MR | Zbl
Brownian motion on volume preserving diffeomorphisms group and existence of global solutions of 2D stochastic Euler equation, J. Funct. Anal., Volume 242 (2007), pp. 304-326 (ISSN: 0022-1236) | DOI | MR | Zbl
, Oxford Lecture Series in Mathematics and its Applications, 13, The Clarendon Press Univ. Press, 1998, 186 pages (ISBN: 0-19-850277-X) | MR | Zbl
Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics. III, Acta Math. Sci. (English Ed.), Volume 6 (1986), pp. 75-120 (ISSN: 0252-9602) | DOI | MR | Zbl
, Mathematics and its Applications, 571, Kluwer Academic Publishers, 2004, 320 pages (ISBN: 1-4020-1963-7) | DOI | MR | Zbl
On a 2D stochastic Euler equation of transport type: existence and geometric formulation, Stoch. Dyn., Volume 15 (2015), 1450012 pages (ISSN: 0219-4937) | DOI | MR | Zbl
Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J. Differential Equations, Volume 156 (1999), pp. 93-121 (ISSN: 0022-0396) | DOI | MR | Zbl
Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics. I, II, Acta Math. Sci. (English Ed.), Volume 5 (1985) (ISSN: 0252-9602) | DOI | MR | Zbl
Degenerate parabolic stochastic partial differential equations: quasilinear case, Ann. Probab., Volume 44 (2016), pp. 1916-1955 (ISSN: 0091-1798) | DOI | MR
Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 27-70 (ISSN: 0003-9527) | DOI | MR | Zbl
Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys., Volume 91 (1983), pp. 1-30 http://projecteuclid.org/euclid.cmp/1103940470 (ISSN: 0010-3616) | DOI | MR | Zbl
, Stochastic differential equations (C.I.M.E. Summer Sch.), Volume 77, Springer, 2010, pp. 5-73 | DOI | MR
, Encyclopedia of Mathematics and its Applications, 44, Cambridge Univ. Press, 1992, 454 pages (ISBN: 0-521-38529-6) | DOI | MR | Zbl
Scalar conservation laws with stochastic forcing, J. Funct. Anal., Volume 259 (2010), pp. 1014-1042 (ISSN: 0022-1236) | DOI | MR | Zbl
Scalar conservation laws with stochastic forcing (2013) preprint http://math.univ-lyon1.fr/~vovelle/DebusscheVovelleRevised.pdf (revised version) | MR | Zbl
Invariant measure of scalar first-order conservation laws with stochastic forcing, Probab. Theory Related Fields, Volume 163 (2015), pp. 575-611 (ISSN: 0178-8051) | DOI | MR
Invariant measures for Burgers equation with stochastic forcing, Ann. of Math., Volume 151 (2000), pp. 877-960 (ISSN: 0003-486X) | DOI | MR | Zbl
Compressible fluid flows driven by stochastic forcing, J. Differential Equations, Volume 254 (2013), pp. 1342-1358 (ISSN: 0022-0396) | DOI | MR | Zbl
Stochastic scalar conservation laws, J. Funct. Anal., Volume 255 (2008), pp. 313-373 (ISSN: 0022-1236) | DOI | MR | Zbl
Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise, Ann. Probab., Volume 42 (2014), pp. 80-145 (ISSN: 0091-1798) | DOI | MR | Zbl
Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, Volume 105 (1996), pp. 143-158 (ISSN: 0178-8051) | DOI | MR | Zbl
, Memoirs of the American Mathematical Society, No. 101, Amer. Math. Soc., 1970, 112 pages | MR | Zbl
Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation, Discrete Contin. Dyn. Syst. Ser. B, Volume 1 (2001), pp. 89-102 (ISSN: 1531-3492) | DOI | MR | Zbl
On
Scalar conservation laws with multiple rough fluxes, Commun. Math. Sci., Volume 13 (2015), pp. 1569-1597 (ISSN: 1539-6746) | DOI | MR
Long-time behavior, invariant measures, and regularizing effects for stochastic scalar conservation laws, Comm. Pure Appl. Math., Volume 70 (2017), pp. 1562-1597 (ISSN: 0010-3640) | DOI | MR
Degenerate parabolic stochastic partial differential equations, Stochastic Process. Appl., Volume 123 (2013), pp. 4294-4336 (ISSN: 0304-4149) | DOI | MR | Zbl
A Bhatnagar-Gross-Krook approximation to stochastic scalar conservation laws, Ann. Inst. Henri Poincaré Probab. Stat., Volume 51 (2015), pp. 1500-1528 (ISSN: 0246-0203) | DOI | Numdam | MR
Scalar conservation laws with rough flux and stochastic forcing, Stoch. Partial Differ. Equ. Anal. Comput., Volume 4 (2016), pp. 635-690 (ISSN: 2194-0401) | DOI | MR
On weak solutions of stochastic differential equations, Stoch. Anal. Appl., Volume 30 (2012), pp. 100-121 (ISSN: 0736-2994) | DOI | MR | Zbl
, Grundl. math. Wiss., 288, Springer, 2003, 661 pages (ISBN: 3-540-43932-3) | DOI | MR | Zbl
Asymptotic behavior of solutions to scalar conservation laws and optimal convergence orders to
On the stochastic quasi-linear symmetric hyperbolic system, J. Differential Equations, Volume 250 (2011), pp. 1650-1684 (ISSN: 0022-0396) | DOI | MR | Zbl
Scalar conservation laws with rough (stochastic) fluxes, Stoch. Partial Differ. Equ. Anal. Comput., Volume 1 (2013), pp. 664-686 (ISSN: 2194-0401) | DOI | MR | Zbl
, Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2011–2012 (Sémin. Équ. Dériv. Partielles), École Polytech., 2013, pp. exp. no XXVI | MR | Zbl
Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case, Stoch. Partial Differ. Equ. Anal. Comput., Volume 2 (2014), pp. 517-538 (ISSN: 2194-0401) | DOI | MR | Zbl
Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math., Volume 49 (1996), pp. 599-638 (ISSN: 0010-3640) | DOI | MR | Zbl
Kinetic formulation of the isentropic gas dynamics and
, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, 23, Amer. Math. Soc., 1968, 648 pages | MR | Zbl
Finite energy solutions to the isentropic Euler equations with geometric effects, J. Math. Pures Appl., Volume 88 (2007), pp. 389-429 (ISSN: 0021-7824) | DOI | MR | Zbl
Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 5 (1978), pp. 489-507 | Numdam | MR | Zbl
A bound from below for the temperature in compressible Navier-Stokes equations, Monatsh. Math., Volume 157 (2009), pp. 143-161 (ISSN: 0026-9255) | DOI | MR | Zbl
On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, Volume 13 (1959), pp. 115-162 | Numdam | MR | Zbl
Stochastic nonlinear wave equations in local Sobolev spaces, Electron. J. Probab., Volume 15 (2010), pp. no. 33, 1041-1091 (ISSN: 1083-6489) | DOI | MR | Zbl
, Fondations, Diderot Éditeur, 1996, 308 pages (ISBN: 2-84134-072-4) | MR
Compact sets in the space
Limit theorems for stochastic processes, Teor. Veroyatnost. i Primenen., Volume 1 (1956), pp. 289-319 | MR | Zbl
Random perturbations of viscous, compressible fluids: global existence of weak solutions, SIAM J. Math. Anal., Volume 49 (2017), pp. 4521-4578 (ISSN: 0036-1410) | DOI | MR | Zbl
Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier), Volume 15 (1965), pp. 189-258 (ISSN: 0373-0956) | DOI | Numdam | MR
One-dimensional stochastic equations for a viscous barotropic gas, Ricerche Mat., Volume 46 (1997), pp. 255-283 (ISSN: 0035-5038) | MR | Zbl
, Monographs in Math., 84, Birkhäuser, 1992, 370 pages (ISBN: 3-7643-2639-5) | DOI | MR | Zbl
On a stochastic first-order hyperbolic equation in a bounded domain, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 12 (2009), pp. 613-651 (ISSN: 0219-0257) | DOI | MR | Zbl
, Grundl. math. Wiss., 123, Springer, 1980, 501 pages (ISBN: 3-540-10210-8) | MR
Cité par Sources :