[Équations d'Euler stochastiques isentropiques]
Nous étudions le système d'Euler des gaz isentropiques, pour une loi de pression en , avec un forçage stochastique. Nous prouvons l'existence de solutions martingales vérifiant des inégalités entropiques. Nous discutons également de l'existence et de la caractérisation de mesures invariantes dans la section de conclusion.
We study the stochastically forced system of isentropic Euler equations of gas dynamics with a -law for the pressure. We show the existence of martingale weak entropy solutions; we also discuss the existence and characterization of invariant measures in the concluding section.
Keywords: Stochastic partial differential equations, isentropic Euler equations, entropy solutions.
Mot clés : Équations aux dérivées partielles stochastiques, système d'Euler isentropique, solutions entropiques.
@article{ASENS_2019__52_1_181_0, author = {Berthelin, Florent and Vovelle, Julien}, title = {Stochastic isentropic {Euler} equations}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {181--254}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {1}, year = {2019}, doi = {10.24033/asens.2386}, mrnumber = {3940909}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2386/} }
TY - JOUR AU - Berthelin, Florent AU - Vovelle, Julien TI - Stochastic isentropic Euler equations JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 181 EP - 254 VL - 52 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2386/ DO - 10.24033/asens.2386 LA - en ID - ASENS_2019__52_1_181_0 ER -
%0 Journal Article %A Berthelin, Florent %A Vovelle, Julien %T Stochastic isentropic Euler equations %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 181-254 %V 52 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2386/ %R 10.24033/asens.2386 %G en %F ASENS_2019__52_1_181_0
Berthelin, Florent; Vovelle, Julien. Stochastic isentropic Euler equations. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 1, pp. 181-254. doi : 10.24033/asens.2386. http://archive.numdam.org/articles/10.24033/asens.2386/
, CEMRACS 2013—modelling and simulation of complex systems: stochastic and deterministic approaches (ESAIM Proc. Surveys), Volume 48, EDP Sciences, 2015, pp. 321-340 | DOI | MR
, MPS/SIAM Series on Optimization, 6, Society for Industrial and Applied Mathematics (SIAM); Mathematical Programming Society (MPS), 2006, 634 pages (ISBN: 0-89871-600-4) | MR | Zbl
Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc., Volume 63 (1977), pp. 370-373 (ISSN: 0002-9939) | DOI | MR | Zbl
Stochastic weak attractor for a dissipative Euler equation, Electron. J. Probab., Volume 5 (2000) (ISSN: 1083-6489) | DOI | MR | Zbl
, Seminar on Stochastic Analysis, Random Fields and Applications V (Progr. Probab.), Volume 59, Birkhäuser, 2008, pp. 23-36 | DOI | MR | Zbl
Martingale solutions for stochastic Euler equations, Stochastic Anal. Appl., Volume 17 (1999), pp. 713-725 (ISSN: 0736-2994) | DOI | MR | Zbl
2-D Euler equation perturbed by noise, NoDEA Nonlinear Differential Equations Appl., Volume 6 (1999), pp. 35-54 (ISSN: 1021-9722) | DOI | MR | Zbl
Incompressible limit for compressible fluids with stochastic forcing, Arch. Ration. Mech. Anal., Volume 222 (2016), pp. 895-926 (ISSN: 0003-9527) | DOI | MR
Existence and uniqueness for stochastic 2d Euler flows with bounded vorticity (preprint arXiv:1401.5938 ) | MR
Stochastic Navier-Stokes equations for compressible fluids, Indiana Univ. Math. J., Volume 65 (2016), pp. 1183-1250 (ISSN: 0022-2518) | DOI | MR
, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, 1999, 277 pages (ISBN: 0-471-19745-9) | DOI | MR | Zbl
Weak solutions to stochastic wave equations with values in Riemannian manifolds, Comm. Partial Differential Equations, Volume 36 (2011), pp. 1624-1653 (ISSN: 0360-5302) | DOI | MR | Zbl
Stochastic two dimensional Euler equations, Ann. Probab., Volume 29 (2001), pp. 1796-1832 (ISSN: 0091-1798) | DOI | MR | Zbl
Optimal relaxed control of dissipative stochastic partial differential equations in Banach spaces, SIAM J. Control Optim., Volume 51 (2013), pp. 2664-2703 (ISSN: 0363-0129) | DOI | MR | Zbl
The Cauchy problem for conservation laws with a multiplicative stochastic perturbation, J. Hyperbolic Differ. Equ., Volume 9 (2012), pp. 661-709 (ISSN: 0219-8916) | DOI | MR | Zbl
Stochastic Euler equations on the torus, Ann. Appl. Probab., Volume 9 (1999), pp. 688-705 (ISSN: 1050-5164) | DOI | MR | Zbl
Positively invariant regions for systems of nonlinear diffusion equations, Indiana Univ. Math. J., Volume 26 (1977), pp. 373-392 (ISSN: 0022-2518) | DOI | MR | Zbl
On nonlinear stochastic balance laws, Arch. Ration. Mech. Anal., Volume 204 (2012), pp. 707-743 (ISSN: 0003-9527) | DOI | MR | Zbl
Decay of entropy solutions of nonlinear conservation laws, Arch. Ration. Mech. Anal., Volume 146 (1999), pp. 95-127 (ISSN: 0003-9527) | DOI | MR | Zbl
Brownian motion on volume preserving diffeomorphisms group and existence of global solutions of 2D stochastic Euler equation, J. Funct. Anal., Volume 242 (2007), pp. 304-326 (ISSN: 0022-1236) | DOI | MR | Zbl
, Oxford Lecture Series in Mathematics and its Applications, 13, The Clarendon Press Univ. Press, 1998, 186 pages (ISBN: 0-19-850277-X) | MR | Zbl
Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics. III, Acta Math. Sci. (English Ed.), Volume 6 (1986), pp. 75-120 (ISSN: 0252-9602) | DOI | MR | Zbl
, Mathematics and its Applications, 571, Kluwer Academic Publishers, 2004, 320 pages (ISBN: 1-4020-1963-7) | DOI | MR | Zbl
On a 2D stochastic Euler equation of transport type: existence and geometric formulation, Stoch. Dyn., Volume 15 (2015), 1450012 pages (ISSN: 0219-4937) | DOI | MR | Zbl
Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems, J. Differential Equations, Volume 156 (1999), pp. 93-121 (ISSN: 0022-0396) | DOI | MR | Zbl
Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics. I, II, Acta Math. Sci. (English Ed.), Volume 5 (1985) (ISSN: 0252-9602) | DOI | MR | Zbl
Degenerate parabolic stochastic partial differential equations: quasilinear case, Ann. Probab., Volume 44 (2016), pp. 1916-1955 (ISSN: 0091-1798) | DOI | MR
Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 27-70 (ISSN: 0003-9527) | DOI | MR | Zbl
Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys., Volume 91 (1983), pp. 1-30 http://projecteuclid.org/euclid.cmp/1103940470 (ISSN: 0010-3616) | DOI | MR | Zbl
, Stochastic differential equations (C.I.M.E. Summer Sch.), Volume 77, Springer, 2010, pp. 5-73 | DOI | MR
, Encyclopedia of Mathematics and its Applications, 44, Cambridge Univ. Press, 1992, 454 pages (ISBN: 0-521-38529-6) | DOI | MR | Zbl
Scalar conservation laws with stochastic forcing, J. Funct. Anal., Volume 259 (2010), pp. 1014-1042 (ISSN: 0022-1236) | DOI | MR | Zbl
Scalar conservation laws with stochastic forcing (2013) preprint http://math.univ-lyon1.fr/~vovelle/DebusscheVovelleRevised.pdf (revised version) | MR | Zbl
Invariant measure of scalar first-order conservation laws with stochastic forcing, Probab. Theory Related Fields, Volume 163 (2015), pp. 575-611 (ISSN: 0178-8051) | DOI | MR
Invariant measures for Burgers equation with stochastic forcing, Ann. of Math., Volume 151 (2000), pp. 877-960 (ISSN: 0003-486X) | DOI | MR | Zbl
Compressible fluid flows driven by stochastic forcing, J. Differential Equations, Volume 254 (2013), pp. 1342-1358 (ISSN: 0022-0396) | DOI | MR | Zbl
Stochastic scalar conservation laws, J. Funct. Anal., Volume 255 (2008), pp. 313-373 (ISSN: 0022-1236) | DOI | MR | Zbl
Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise, Ann. Probab., Volume 42 (2014), pp. 80-145 (ISSN: 0091-1798) | DOI | MR | Zbl
Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, Volume 105 (1996), pp. 143-158 (ISSN: 0178-8051) | DOI | MR | Zbl
, Memoirs of the American Mathematical Society, No. 101, Amer. Math. Soc., 1970, 112 pages | MR | Zbl
Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation, Discrete Contin. Dyn. Syst. Ser. B, Volume 1 (2001), pp. 89-102 (ISSN: 1531-3492) | DOI | MR | Zbl
On -solutions of semilinear stochastic partial differential equations, Stochastic Process. Appl., Volume 90 (2000), pp. 83-108 (ISSN: 0304-4149) | DOI | MR | Zbl
Scalar conservation laws with multiple rough fluxes, Commun. Math. Sci., Volume 13 (2015), pp. 1569-1597 (ISSN: 1539-6746) | DOI | MR
Long-time behavior, invariant measures, and regularizing effects for stochastic scalar conservation laws, Comm. Pure Appl. Math., Volume 70 (2017), pp. 1562-1597 (ISSN: 0010-3640) | DOI | MR
Degenerate parabolic stochastic partial differential equations, Stochastic Process. Appl., Volume 123 (2013), pp. 4294-4336 (ISSN: 0304-4149) | DOI | MR | Zbl
A Bhatnagar-Gross-Krook approximation to stochastic scalar conservation laws, Ann. Inst. Henri Poincaré Probab. Stat., Volume 51 (2015), pp. 1500-1528 (ISSN: 0246-0203) | DOI | Numdam | MR
Scalar conservation laws with rough flux and stochastic forcing, Stoch. Partial Differ. Equ. Anal. Comput., Volume 4 (2016), pp. 635-690 (ISSN: 2194-0401) | DOI | MR
On weak solutions of stochastic differential equations, Stoch. Anal. Appl., Volume 30 (2012), pp. 100-121 (ISSN: 0736-2994) | DOI | MR | Zbl
, Grundl. math. Wiss., 288, Springer, 2003, 661 pages (ISBN: 3-540-43932-3) | DOI | MR | Zbl
Asymptotic behavior of solutions to scalar conservation laws and optimal convergence orders to -waves, J. Differential Equations, Volume 192 (2003), pp. 202-224 (ISSN: 0022-0396) | DOI | MR | Zbl
On the stochastic quasi-linear symmetric hyperbolic system, J. Differential Equations, Volume 250 (2011), pp. 1650-1684 (ISSN: 0022-0396) | DOI | MR | Zbl
Scalar conservation laws with rough (stochastic) fluxes, Stoch. Partial Differ. Equ. Anal. Comput., Volume 1 (2013), pp. 664-686 (ISSN: 2194-0401) | DOI | MR | Zbl
, Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2011–2012 (Sémin. Équ. Dériv. Partielles), École Polytech., 2013, pp. exp. no XXVI | MR | Zbl
Scalar conservation laws with rough (stochastic) fluxes: the spatially dependent case, Stoch. Partial Differ. Equ. Anal. Comput., Volume 2 (2014), pp. 517-538 (ISSN: 2194-0401) | DOI | MR | Zbl
Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates, Comm. Pure Appl. Math., Volume 49 (1996), pp. 599-638 (ISSN: 0010-3640) | DOI | MR | Zbl
Kinetic formulation of the isentropic gas dynamics and -systems, Comm. Math. Phys., Volume 163 (1994), pp. 415-431 http://projecteuclid.org/euclid.cmp/1104270470 (ISSN: 0010-3616) | DOI | MR | Zbl
, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, 23, Amer. Math. Soc., 1968, 648 pages | MR | Zbl
Finite energy solutions to the isentropic Euler equations with geometric effects, J. Math. Pures Appl., Volume 88 (2007), pp. 389-429 (ISSN: 0021-7824) | DOI | MR | Zbl
Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 5 (1978), pp. 489-507 | Numdam | MR | Zbl
A bound from below for the temperature in compressible Navier-Stokes equations, Monatsh. Math., Volume 157 (2009), pp. 143-161 (ISSN: 0026-9255) | DOI | MR | Zbl
On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, Volume 13 (1959), pp. 115-162 | Numdam | MR | Zbl
Stochastic nonlinear wave equations in local Sobolev spaces, Electron. J. Probab., Volume 15 (2010), pp. no. 33, 1041-1091 (ISSN: 1083-6489) | DOI | MR | Zbl
, Fondations, Diderot Éditeur, 1996, 308 pages (ISBN: 2-84134-072-4) | MR
Compact sets in the space , Ann. Mat. Pura Appl., Volume 146 (1987), pp. 65-96 (ISSN: 0003-4622) | DOI | MR | Zbl
Limit theorems for stochastic processes, Teor. Veroyatnost. i Primenen., Volume 1 (1956), pp. 289-319 | MR | Zbl
Random perturbations of viscous, compressible fluids: global existence of weak solutions, SIAM J. Math. Anal., Volume 49 (2017), pp. 4521-4578 (ISSN: 0036-1410) | DOI | MR | Zbl
Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier), Volume 15 (1965), pp. 189-258 (ISSN: 0373-0956) | DOI | Numdam | MR
One-dimensional stochastic equations for a viscous barotropic gas, Ricerche Mat., Volume 46 (1997), pp. 255-283 (ISSN: 0035-5038) | MR | Zbl
, Monographs in Math., 84, Birkhäuser, 1992, 370 pages (ISBN: 3-7643-2639-5) | DOI | MR | Zbl
On a stochastic first-order hyperbolic equation in a bounded domain, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 12 (2009), pp. 613-651 (ISSN: 0219-0257) | DOI | MR | Zbl
, Grundl. math. Wiss., 123, Springer, 1980, 501 pages (ISBN: 3-540-10210-8) | MR
Cité par Sources :