[Compactifications toroïdales des modèles entiers de variétés de Shimura de type de Hodge]
Nous construisons des compactifications toroïdales pour les modèles entiers de variétés de Shimura de type de Hodge. Nous construisons également la compactification minimale (ou de Satake-Baily-Borel) pour ces modèles entiers. Nos résultats réduisent le problème à la compréhension des modèles entiers eux-mêmes. Donc ils recouvrent tous les cas déjá connus de type PEL. Quand le niveau est hyperspécial, nous montrons que nos compactifications sont canoniques dans un sens précis. Nous fournissons une nouvelle preuve de la conjecture de Y. Morita sur la bonne réduction de variétés abéliennes dont le groupe de Mumford-Tate est anisotrope modulo son centre. Sur le chemin, nous démontrons une propriété de rationalité intéressante de cycles de Hodge sur les variétés abéliennes par rapport aux uniformisations analytiques -adiques.
We construct toroidal compactifications for integral models of Shimura varieties of Hodge type. We also construct integral models of the minimal (Satake-Baily-Borel) compactification. Our results essentially reduce the problem to understanding the integral models themselves. As such, they cover all previously known cases of PEL type. At primes where the level is hyperspecial, we show that our compactifications are canonical in a precise sense. We also provide a new proof of Y. Morita's conjecture on the everywhere good reduction of abelian varieties whose Mumford-Tate group is anisotropic modulo center. Along the way, we demonstrate an interesting rationality property of Hodge cycles on abelian varieties with respect to -adic analytic uniformizations.
Keywords: Variétés de Shimura, compactifications, variétés abéliennes, theorie de Dieudonné logarithmique.
Mot clés : Shimura varieties, compactifications, abelian varieties, logarithmic Dieudonné theory.
@article{ASENS_2019__52_2_395_0, author = {Madapusi Pera, Keerthi}, title = {Toroidal {Compactifications} of {Integral} {Models} of {Shimura} {Varieties} of {Hodge} {Type}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {393--514}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {2}, year = {2019}, doi = {10.24033/asens.2391}, mrnumber = {3948111}, zbl = {1431.14041}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2391/} }
TY - JOUR AU - Madapusi Pera, Keerthi TI - Toroidal Compactifications of Integral Models of Shimura Varieties of Hodge Type JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 393 EP - 514 VL - 52 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2391/ DO - 10.24033/asens.2391 LA - en ID - ASENS_2019__52_2_395_0 ER -
%0 Journal Article %A Madapusi Pera, Keerthi %T Toroidal Compactifications of Integral Models of Shimura Varieties of Hodge Type %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 393-514 %V 52 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2391/ %R 10.24033/asens.2391 %G en %F ASENS_2019__52_2_395_0
Madapusi Pera, Keerthi. Toroidal Compactifications of Integral Models of Shimura Varieties of Hodge Type. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 2, pp. 393-514. doi : 10.24033/asens.2391. http://archive.numdam.org/articles/10.24033/asens.2391/
Crystalline realizations of 1-motives, Math. Ann., Volume 331 (2005), pp. 111-172 | DOI | MR | Zbl
, Cambridge Mathematical Library, Cambridge Univ. Press, 2010 | MR | Zbl
-adic Betti lattices, -adic Analysis (Lecture Notes in Math.), Springer (1990), pp. 23-63 | DOI | MR | Zbl
, Lecture Notes in mathematics, 930, Springer, 1982 | MR | Zbl
A -adic property of Hodge classes on abelian varieties, Motives (Proc. Sympos. Pure Math.), Volume 55, Amer. Math. Soc. (1994), pp. 293-308 | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 21, Springer, 1990 | MR | Zbl
Groupes -divisibles, groupes finis et modules filtrés, Ann. of Math., Volume 152 (2000), pp. 489-549 | DOI | MR | Zbl
Representations -adiques semi-stables et transversalité de Griffiths, Math. Ann., Volume 307 (1997), pp. 191-224 | DOI | MR | Zbl
1-motifs et formes automorphes (théorie arithmétique des domaines de Siegel), Conference on automorphic theory (Dijon, 1981) (Publ. Math. Univ. Paris VII), Volume 15 (1983), pp. 43-106 | MR | Zbl
Appendix to “The Iwasawa Conjecture for Totally Real Fields: Arithmetic Minimal compactification of the Hilbert-Blumenthal moduli spaces”, Ann. of Math., Volume 131 (1990), pp. 541-554 | DOI | MR | Zbl
The Frobenius and monodromy operators for curves and abelian varieties, Duke Math. J., Volume 97 (1999), pp. 171-215 | DOI | MR | Zbl
, Arithmetic geometry (Clay Math. Proc.), Volume 8, Amer. Math. Soc., 2009, pp. 441-536 | MR | Zbl
Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études Sci. Publ. Math., Volume 82 (1995), pp. 5-96 | DOI | Numdam | MR | Zbl
(Séminaire Bourbaki, vol. 1970/1971, exposé no 389, Lecture Notes in Math.), Volume 244, Springer, 1971, pp. 123-165 | Numdam | MR | Zbl
La conjecture de Weil pour les surfaces , Invent. math., Volume 15 (1972), pp. 206-226 | DOI | MR | Zbl
Théorie de Hodge, III, Inst. Hautes Études Sci. Publ. Math., Volume 44 (1974), pp. 5-77 | DOI | Numdam | MR | Zbl
Variétés de Shimura: interprétation modulaire, et techniques de construction de modeles canoniques, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proc. Sympos. Pure Math., XXXIII), Amer. Math. Soc. (1979), pp. 247-289 | MR | Zbl
, Lecture Notes in Math., 900, Springer, 1982 | MR | Zbl
, Cambridge Tracts in Mathematics, 183, Cambridge Univ. Press, 2010 | MR | Zbl
Integral crystalline cohomology over very ramified valuation rings, J. Amer. Math. Soc., Volume 12 (1999), pp. 117-144 | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 22, Springer, 1990 | MR | Zbl
, Périodes -adiques (Bures-sur-Yvette, 1988) (Asterisque), Volume 223, Soc. Math. de France, 1994, pp. 59-111 | Numdam | MR | Zbl
Fibres formelles d'un anneau local noethérien, Ann. Sci. Ec. Norm. Super., Volume 3 (1970), pp. 295-311 | DOI | Numdam | MR | Zbl
(Grothendieck, A., ed.), Lecture Notes in Math., 288, Springer, 1972 | Zbl
Functorial Properties of Toroidal Compactifications of Locally Symmetric Varieties, Proc. Lond. Math. Soc., Volume 59 (1989), pp. 1-22 | DOI | MR | Zbl
The arithmetic volume of Shimura varieties of orthogonal type (2010), 313 pages | MR
, Surfaces Algébriques (Orsay, 1976-78) (Lecture Notes in Math.), Volume 868, Springer, 1981, pp. 138-202 | DOI | MR | Zbl
Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geoemtry and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press (1989), pp. 191-224 | MR | Zbl
Integral models for Shimura varieties of abelian type, J. Amer. Math. Soc., Volume 23 (2010), pp. 967-1012 | DOI | MR | Zbl
, Lecture Notes in Math., 339, Springer, 1973 | MR | Zbl
2-adic integral canonical models, Forum of Mathematics, Sigma, Volume 4 (2016) (e28, doi:10.1017/fms.2016.23 ) | MR | Zbl
Points on Some Shimura Varieties Over Finite Fields, J. Amer. Math. Soc., Volume 5 (1992), pp. 373-444 | DOI | MR | Zbl
Integral models of Shimura varieties with parahoric level structure, Publ. Math. Inst. Hautes Ãtudes Sci., Volume 128 (2018), pp. 121-218 | DOI | MR | Zbl
On the conjectures of Birch and Swinnerton-Dyer in characteristic , Invent. math., Volume 153 (2003), pp. 537-592 | DOI | MR | Zbl
, Heegner Points and Rankin L-Series (Math. Sci. Res. Inst. Publ.), Volume 49, Cambridge Univ. Press, 2004, pp. 243-270 | DOI | MR | Zbl
Elevators for Degenerations of PEL Structures, Math. Res. Lett., Volume 18 (2011), pp. 889-907 | DOI | MR | Zbl
Comparison between analytic and algebraic constructions of toroidal compactifications of PEL-type Shimura varieties, J. reine angew. Math., Volume 2012 (2012) | MR | Zbl
, London Mathematical Society monographs, 36, Princeton Univ. Press, 2013 | MR | Zbl
Compactifications of PEL-type Shimura varieties in ramified characteristics, Forum of Mathematics, Sigma, Volume 4 (2016) (e1, doi:10.1017/fms.2015.31 ) | MR | Zbl
A proof of a conjecture of Y. Morita, Bull. Lond. Math. Soc., Volume 44 (2012), pp. 861-870 | DOI | MR | Zbl
Abelian subvarieties, J. Algebra, Volume 180 (1996), pp. 513-516 | DOI | MR | Zbl
Toroidal compactifications of integral models of Shimura varieties of Hodge type (2011) | MR
The Tate conjecture for K3 surfaces in odd characteristic, Invent. math., Volume 201 (2015), pp. 625-668 | DOI | MR | Zbl
Integral canonical models for Spin Shimura varieties, Compos. Math., Volume 152 (2016), pp. 769-824 | DOI | MR | Zbl
, Cambridge Studies in Advanced Math., 8, Cambridge Univ. Press, 1987, pp. 1-19 | MR | Zbl
, Ergebn. Math. Grenzg., 34, Springer, 1994 | MR | Zbl
Canonical models of (mixed) Shimura varieties and automorphic vector bundles, Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988) (Perspect. Math.), Volume 10, Academic Press (1990), pp. 283-414 | MR | Zbl
Shimura varieties and motives, Motives (Seattle, WA, 1991) (Proc. Sympos. Pure Math.), Volume 55, Amer. Math. Soc. (1994), pp. 447-523 | MR | Zbl
Models of Shimura varieties in mixed characteristics, Galois representations in arithmetic algebraic geoemety (Durham, 1996) (London Math. Soc. Lecture Note Ser.), Volume 254, Cambridge Univ. Press (1998), pp. 267-350 | DOI | MR | Zbl
Complexes pondérés sur les compactifications de Baily-Borel: le cas des variétés de Siegel, J. Amer. Math. Soc., Volume 21 (2008), pp. 23-61 | DOI | MR | Zbl
The intersection complex as a weight truncation and an application to Shimura varieties, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency (2011), pp. 312-334 | MR | Zbl
On potential good reduction of abelian varieties, J. Fac. Sci. Univ. Tokyo Sect. I A Math., Volume 22 (1975), pp. 437-447 | MR | Zbl
Pinceaux de variétés abéliennes, Astérisque, Volume 129 (1985), 266 pages | Numdam | MR | Zbl
Galois representations, Mumford-Tate groups and good reduction of abelian varieties, Math. Ann., Volume 329 (2004), pp. 119-160 | DOI | MR | Zbl
, Bonner Mathematische Schriften, Universität Bonn Mathematisches Institut, 1990 | MR | Zbl
Local models of Shimura varieties and a conjecture of Kottwitz, Invent. math., Volume 194 (2013), pp. 147-254 | DOI | MR | Zbl
Variétés abéliennes et géométrie rigide, Actes de Congrés International des Mathématiciens, Nice, 1970, Gauthier-Villars (1971), pp. 473-477 | MR
, Lecture Notes in Math., 265, Springer, 1972 | MR | Zbl
Compactification de varietes de Siegel aux places de mauvaise reduction, Bull. Soc. Math. France, Volume 138 (2010), pp. 259-315 | DOI | Numdam | MR | Zbl
Projective integral models of Shimura varieties of Hodge type with compact factors, J. reine angew. Math., Volume 618 (2008), pp. 51-75 | MR | Zbl
Integral canonical models of Shimura varieties of preabelian type, Asian J. Math., Volume 3 (1999), pp. 401-518 | DOI | MR | Zbl
Hodge structure on the fundamental group and its application to -adic integration, Mosc. Math. J., Volume 3 (2003), pp. 205-247 | DOI | MR | Zbl
Purity results for p-divisible groups and abelian schemes over regular bases of mixed characteristic, Doc. Math., Volume 15 (2010), pp. 571-599 | DOI | MR | Zbl
A finiteness theorem for unpolarized Abelian varieties over number fields with prescribed places of bad reduction, Invent. math., Volume 79 (1985), pp. 309-321 | DOI | MR | Zbl
Cité par Sources :