Toroidal Compactifications of Integral Models of Shimura Varieties of Hodge Type
[Compactifications toroïdales des modèles entiers de variétés de Shimura de type de Hodge]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 2, pp. 393-514.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Nous construisons des compactifications toroïdales pour les modèles entiers de variétés de Shimura de type de Hodge. Nous construisons également la compactification minimale (ou de Satake-Baily-Borel) pour ces modèles entiers. Nos résultats réduisent le problème à la compréhension des modèles entiers eux-mêmes. Donc ils recouvrent tous les cas déjá connus de type PEL. Quand le niveau est hyperspécial, nous montrons que nos compactifications sont canoniques dans un sens précis. Nous fournissons une nouvelle preuve de la conjecture de Y. Morita sur la bonne réduction de variétés abéliennes dont le groupe de Mumford-Tate est anisotrope modulo son centre. Sur le chemin, nous démontrons une propriété de rationalité intéressante de cycles de Hodge sur les variétés abéliennes par rapport aux uniformisations analytiques p-adiques.

We construct toroidal compactifications for integral models of Shimura varieties of Hodge type. We also construct integral models of the minimal (Satake-Baily-Borel) compactification. Our results essentially reduce the problem to understanding the integral models themselves. As such, they cover all previously known cases of PEL type. At primes where the level is hyperspecial, we show that our compactifications are canonical in a precise sense. We also provide a new proof of Y. Morita's conjecture on the everywhere good reduction of abelian varieties whose Mumford-Tate group is anisotropic modulo center. Along the way, we demonstrate an interesting rationality property of Hodge cycles on abelian varieties with respect to p-adic analytic uniformizations.

DOI : 10.24033/asens.2391
Classification : 11G18, 14G35
Keywords: Variétés de Shimura, compactifications, variétés abéliennes, theorie de Dieudonné logarithmique.
Mot clés : Shimura varieties, compactifications, abelian varieties, logarithmic Dieudonné theory.
@article{ASENS_2019__52_2_395_0,
     author = {Madapusi Pera, Keerthi},
     title = {Toroidal {Compactifications}  of {Integral} {Models} of {Shimura}  {Varieties} of {Hodge} {Type}},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {393--514},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {2},
     year = {2019},
     doi = {10.24033/asens.2391},
     mrnumber = {3948111},
     zbl = {1431.14041},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/asens.2391/}
}
TY  - JOUR
AU  - Madapusi Pera, Keerthi
TI  - Toroidal Compactifications  of Integral Models of Shimura  Varieties of Hodge Type
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 393
EP  - 514
VL  - 52
IS  - 2
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://archive.numdam.org/articles/10.24033/asens.2391/
DO  - 10.24033/asens.2391
LA  - en
ID  - ASENS_2019__52_2_395_0
ER  - 
%0 Journal Article
%A Madapusi Pera, Keerthi
%T Toroidal Compactifications  of Integral Models of Shimura  Varieties of Hodge Type
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 393-514
%V 52
%N 2
%I Société Mathématique de France. Tous droits réservés
%U http://archive.numdam.org/articles/10.24033/asens.2391/
%R 10.24033/asens.2391
%G en
%F ASENS_2019__52_2_395_0
Madapusi Pera, Keerthi. Toroidal Compactifications  of Integral Models of Shimura  Varieties of Hodge Type. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 2, pp. 393-514. doi : 10.24033/asens.2391. http://archive.numdam.org/articles/10.24033/asens.2391/

Andreatta, F.; Barbieri-Viale, L. Crystalline realizations of 1-motives, Math. Ann., Volume 331 (2005), pp. 111-172 | DOI | MR | Zbl

Ash, A.; Mumford, D.; Rapoport, M.; Tai, Y.-S., Cambridge Mathematical Library, Cambridge Univ. Press, 2010 | MR | Zbl

André, Y. p-adic Betti lattices, p -adic Analysis (Lecture Notes in Math.), Springer (1990), pp. 23-63 | DOI | MR | Zbl

Berthelot, P.; Breen, L.; Messing, W., Lecture Notes in mathematics, 930, Springer, 1982 | MR | Zbl

Blasius, D. A p-adic property of Hodge classes on abelian varieties, Motives (Proc. Sympos. Pure Math.), Volume 55, Amer. Math. Soc. (1994), pp. 293-308 | DOI | MR | Zbl

Bosch, S.; Lütkebohmert, W.; Raynaud, M., Ergebn. Math. Grenzg., 21, Springer, 1990 | MR | Zbl

Breuil, C. Groupes p-divisibles, groupes finis et modules filtrés, Ann. of Math., Volume 152 (2000), pp. 489-549 | DOI | MR | Zbl

Breuil, C. Representations p-adiques semi-stables et transversalité de Griffiths, Math. Ann., Volume 307 (1997), pp. 191-224 | DOI | MR | Zbl

Brylinski, J.-L. 1-motifs et formes automorphes (théorie arithmétique des domaines de Siegel), Conference on automorphic theory (Dijon, 1981) (Publ. Math. Univ. Paris VII), Volume 15 (1983), pp. 43-106 | MR | Zbl

Chai, C.-L. Appendix to “The Iwasawa Conjecture for Totally Real Fields: Arithmetic Minimal compactification of the Hilbert-Blumenthal moduli spaces”, Ann. of Math., Volume 131 (1990), pp. 541-554 | DOI | MR | Zbl

Coleman, R.; Iovita, A. The Frobenius and monodromy operators for curves and abelian varieties, Duke Math. J., Volume 97 (1999), pp. 171-215 | DOI | MR | Zbl

Chai, C.-L.; Oort, F., Arithmetic geometry (Clay Math. Proc.), Volume 8, Amer. Math. Soc., 2009, pp. 441-536 | MR | Zbl

de Jong, A. J. Crystalline Dieudonné module theory via formal and rigid geometry, Inst. Hautes Études Sci. Publ. Math., Volume 82 (1995), pp. 5-96 | DOI | Numdam | MR | Zbl

Deligne, P. (Séminaire Bourbaki, vol. 1970/1971, exposé no 389, Lecture Notes in Math.), Volume 244, Springer, 1971, pp. 123-165 | Numdam | MR | Zbl

Deligne, P. La conjecture de Weil pour les surfaces K3 , Invent. math., Volume 15 (1972), pp. 206-226 | DOI | MR | Zbl

Deligne, P. Théorie de Hodge, III, Inst. Hautes Études Sci. Publ. Math., Volume 44 (1974), pp. 5-77 | DOI | Numdam | MR | Zbl

Deligne, P. Variétés de Shimura: interprétation modulaire, et techniques de construction de modeles canoniques, Automorphic forms, representations and L -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proc. Sympos. Pure Math., XXXIII), Amer. Math. Soc. (1979), pp. 247-289 | MR | Zbl

Deligne, P.; Milne, J. S.; Ogus, A.; Shih, K.-Y., Lecture Notes in Math., 900, Springer, 1982 | MR | Zbl

Dat, J.-F.; Orlik, S.; Rapoport, M., Cambridge Tracts in Mathematics, 183, Cambridge Univ. Press, 2010 | MR | Zbl

Faltings, G. Integral crystalline cohomology over very ramified valuation rings, J. Amer. Math. Soc., Volume 12 (1999), pp. 117-144 | DOI | MR | Zbl

Faltings, G.; Chai, C.-L., Ergebn. Math. Grenzg., 22, Springer, 1990 | MR | Zbl

Fontaine, J.-M., Périodes p -adiques (Bures-sur-Yvette, 1988) (Asterisque), Volume 223, Soc. Math. de France, 1994, pp. 59-111 | Numdam | MR | Zbl

Ferrand, D.; Raynaud, M. Fibres formelles d'un anneau local noethérien, Ann. Sci. Ec. Norm. Super., Volume 3 (1970), pp. 295-311 | DOI | Numdam | MR | Zbl

(Grothendieck, A., ed.), Lecture Notes in Math., 288, Springer, 1972 | Zbl

Harris, M. Functorial Properties of Toroidal Compactifications of Locally Symmetric Varieties, Proc. Lond. Math. Soc., Volume 59 (1989), pp. 1-22 | DOI | MR | Zbl

Hörmann, F. The arithmetic volume of Shimura varieties of orthogonal type (2010), 313 pages | MR

Katz, N., Surfaces Algébriques (Orsay, 1976-78) (Lecture Notes in Math.), Volume 868, Springer, 1981, pp. 138-202 | DOI | MR | Zbl

Kato, K. Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geoemtry and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press (1989), pp. 191-224 | MR | Zbl

Kisin, M. Integral models for Shimura varieties of abelian type, J. Amer. Math. Soc., Volume 23 (2010), pp. 967-1012 | DOI | MR | Zbl

Kempf, G.; Knudsen, F.; Mumford, D.; Saint-Donat, B., Lecture Notes in Math., 339, Springer, 1973 | MR | Zbl

Kim, W.; Madapusi Pera 2-adic integral canonical models, Forum of Mathematics, Sigma, Volume 4 (2016) (e28, doi:10.1017/fms.2016.23 ) | MR | Zbl

Kottwitz, R. E. Points on Some Shimura Varieties Over Finite Fields, J. Amer. Math. Soc., Volume 5 (1992), pp. 373-444 | DOI | MR | Zbl

Kisin, M.; Pappas, G. Integral models of Shimura varieties with parahoric level structure, Publ. Math. Inst. Hautes Études Sci., Volume 128 (2018), pp. 121-218 | DOI | MR | Zbl

Kato, K.; Trihan, F. On the conjectures of Birch and Swinnerton-Dyer in characteristic p>0 , Invent. math., Volume 153 (2003), pp. 537-592 | DOI | MR | Zbl

Kudla, S. S., Heegner Points and Rankin L-Series (Math. Sci. Res. Inst. Publ.), Volume 49, Cambridge Univ. Press, 2004, pp. 243-270 | DOI | MR | Zbl

Lan, K.-W. Elevators for Degenerations of PEL Structures, Math. Res. Lett., Volume 18 (2011), pp. 889-907 | DOI | MR | Zbl

Lan, K.-W. Comparison between analytic and algebraic constructions of toroidal compactifications of PEL-type Shimura varieties, J. reine angew. Math., Volume 2012 (2012) | MR | Zbl

Lan, K.-W., London Mathematical Society monographs, 36, Princeton Univ. Press, 2013 | MR | Zbl

Lan, K.-W. Compactifications of PEL-type Shimura varieties in ramified characteristics, Forum of Mathematics, Sigma, Volume 4 (2016) (e1, doi:10.1017/fms.2015.31 ) | MR | Zbl

Lee, D. U. A proof of a conjecture of Y. Morita, Bull. Lond. Math. Soc., Volume 44 (2012), pp. 861-870 | DOI | MR | Zbl

Lenstra, H. W. J.; Oort, F.; Zarhin, Y. G. Abelian subvarieties, J. Algebra, Volume 180 (1996), pp. 513-516 | DOI | MR | Zbl

Madapusi Sampath, K. S. Toroidal compactifications of integral models of Shimura varieties of Hodge type (2011) | MR

Madapusi Pera, K. The Tate conjecture for K3 surfaces in odd characteristic, Invent. math., Volume 201 (2015), pp. 625-668 | DOI | MR | Zbl

Madapusi Pera, K. Integral canonical models for Spin Shimura varieties, Compos. Math., Volume 152 (2016), pp. 769-824 | DOI | MR | Zbl

Matsumura, H., Cambridge Studies in Advanced Math., 8, Cambridge Univ. Press, 1987, pp. 1-19 | MR | Zbl

Mumford, D.; Fogarty, J.; Kirwan, F. C., Ergebn. Math. Grenzg., 34, Springer, 1994 | MR | Zbl

Milne, J. S. Canonical models of (mixed) Shimura varieties and automorphic vector bundles, Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988) (Perspect. Math.), Volume 10, Academic Press (1990), pp. 283-414 | MR | Zbl

Milne, J. S. Shimura varieties and motives, Motives (Seattle, WA, 1991) (Proc. Sympos. Pure Math.), Volume 55, Amer. Math. Soc. (1994), pp. 447-523 | MR | Zbl

Moonen, B. Models of Shimura varieties in mixed characteristics, Galois representations in arithmetic algebraic geoemety (Durham, 1996) (London Math. Soc. Lecture Note Ser.), Volume 254, Cambridge Univ. Press (1998), pp. 267-350 | DOI | MR | Zbl

Morel, S. Complexes pondérés sur les compactifications de Baily-Borel: le cas des variétés de Siegel, J. Amer. Math. Soc., Volume 21 (2008), pp. 23-61 | DOI | MR | Zbl

Morel, S. The intersection complex as a weight truncation and an application to Shimura varieties, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency (2011), pp. 312-334 | MR | Zbl

Morita, Y. On potential good reduction of abelian varieties, J. Fac. Sci. Univ. Tokyo Sect. I A Math., Volume 22 (1975), pp. 437-447 | MR | Zbl

Moret-Bailly, L. Pinceaux de variétés abéliennes, Astérisque, Volume 129 (1985), 266 pages | Numdam | MR | Zbl

Paugam, F. Galois representations, Mumford-Tate groups and good reduction of abelian varieties, Math. Ann., Volume 329 (2004), pp. 119-160 | DOI | MR | Zbl

Pink, R., Bonner Mathematische Schriften, Universität Bonn Mathematisches Institut, 1990 | MR | Zbl

Pappas, G.; Zhu, X. Local models of Shimura varieties and a conjecture of Kottwitz, Invent. math., Volume 194 (2013), pp. 147-254 | DOI | MR | Zbl

Raynaud, M. Variétés abéliennes et géométrie rigide, Actes de Congrés International des Mathématiciens, Nice, 1970, Gauthier-Villars (1971), pp. 473-477 | MR

Saavedra Rivano, N., Lecture Notes in Math., 265, Springer, 1972 | MR | Zbl

Stroh, B. Compactification de varietes de Siegel aux places de mauvaise reduction, Bull. Soc. Math. France, Volume 138 (2010), pp. 259-315 | DOI | Numdam | MR | Zbl

Vasiu, A. Projective integral models of Shimura varieties of Hodge type with compact factors, J. reine angew. Math., Volume 618 (2008), pp. 51-75 | MR | Zbl

Vasiu, A. Integral canonical models of Shimura varieties of preabelian type, Asian J. Math., Volume 3 (1999), pp. 401-518 | DOI | MR | Zbl

Vologodsky, V. Hodge structure on the fundamental group and its application to p-adic integration, Mosc. Math. J., Volume 3 (2003), pp. 205-247 | DOI | MR | Zbl

Vasiu, A.; Zink, T. Purity results for p-divisible groups and abelian schemes over regular bases of mixed characteristic, Doc. Math., Volume 15 (2010), pp. 571-599 | DOI | MR | Zbl

Zarhin, Y. G. A finiteness theorem for unpolarized Abelian varieties over number fields with prescribed places of bad reduction, Invent. math., Volume 79 (1985), pp. 309-321 | DOI | MR | Zbl

Cité par Sources :