[Fibrés en droites plats et torsion de Cappell-Miller en géométrie d'Arakelov]
Dans cet article nous étendons l'isomorphisme de Riemann-Roch fonctoriel pour les fibrés en droites holomorphes Hermitiens, dû à Deligne, au cas des fibrés plats non nécessairement unitaires. La métrique de Quillen et le produit de Gillet-Soulé sont remplacés par des logarithmes à valeurs complexes. Sur le déterminant de la cohomologie, nous montrons que la torsion de Cappell-Miller est l'analogue approprié de la métrique de Quillen. Sur les accouplements de Deligne, les logarithmes raffinent les connexions d'intersection introduites dans un travail précédent. La construction conduit naturellement à une théorie d'Arakelov pour les fibrés plats sur les surfaces arithmétiques, et produit des nombres d'intersection arithmétique à valeurs dans . Dans ce contexte, nous démontrons une formule de Riemann-Roch arithmétique. On réalise ainsi un programme proposé par Cappell-Miller visant à montrer que leur torsion holomorphe possède des propriétés analogues à celles de la métrique de Quillen établies par Bismut, Gillet et Soulé. Finalement, nous donnons des exemples qui clarifient le type d'invariants que ce formalisme encode: des périodes de formes différentielles.
In this paper, we extend Deligne's functorial Riemann-Roch isomorphism for Hermitian holomorphic line bundles on Riemann surfaces to the case of flat, not necessarily unitary connections. The Quillen metric and -product of Gillet-Soulé are replaced with complex valued logarithms. On the determinant of cohomology side, we show that the Cappell-Miller torsion is the appropriate counterpart of the Quillen metric. On the Deligne pairing side, the logarithm is a refinement of the intersection connections considered in a previous work. The construction naturally leads to an Arakelov theory for flat line bundles on arithmetic surfaces and produces arithmetic intersection numbers valued in . In this context we prove an arithmetic Riemann-Roch theorem. This realizes a program proposed by Cappell-Miller to show that their holomorphic torsion exhibits properties similar to those of the Quillen metric proved by Bismut, Gillet and Soulé. Finally, we give examples that clarify the kind of invariants that the formalism captures; namely, periods of differential forms.
DOI : 10.24033/asens.2409
Keywords: Flat connections, Cappell-Miller torsion, Riemann-Roch, arithmetic intersections.
Mot clés : Connexions plates, torsion de Cappell-Miller, Riemann-Roch, intersections arithmétiques.
@article{ASENS_2019__52_5_1265_0, author = {Freixas i Montplet, Gerard and Wentworth, Richard A.}, title = {Flat line bundles and the {Cappell-Miller} torsion in {Arakelov} geometry}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1265--1303}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {5}, year = {2019}, doi = {10.24033/asens.2409}, mrnumber = {4057783}, zbl = {1440.14043}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/asens.2409/} }
TY - JOUR AU - Freixas i Montplet, Gerard AU - Wentworth, Richard A. TI - Flat line bundles and the Cappell-Miller torsion in Arakelov geometry JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 1265 EP - 1303 VL - 52 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://archive.numdam.org/articles/10.24033/asens.2409/ DO - 10.24033/asens.2409 LA - en ID - ASENS_2019__52_5_1265_0 ER -
%0 Journal Article %A Freixas i Montplet, Gerard %A Wentworth, Richard A. %T Flat line bundles and the Cappell-Miller torsion in Arakelov geometry %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 1265-1303 %V 52 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://archive.numdam.org/articles/10.24033/asens.2409/ %R 10.24033/asens.2409 %G en %F ASENS_2019__52_5_1265_0
Freixas i Montplet, Gerard; Wentworth, Richard A. Flat line bundles and the Cappell-Miller torsion in Arakelov geometry. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 5, pp. 1265-1303. doi : 10.24033/asens.2409. http://archive.numdam.org/articles/10.24033/asens.2409/
An intersection theory for divisors on an arithmetic surface, Izv. Akad. Nauk SSSR Ser. Mat., Volume 38 (1974), pp. 1179-1192 (ISSN: 0373-2436) | MR | Zbl
The analysis of elliptic families. I. Metrics and connections on determinant bundles, Comm. Math. Phys., Volume 106 (1986), pp. 159-176 http://projecteuclid.org/euclid.cmp/1104115586 (ISSN: 0010-3616) | DOI | MR | Zbl
The analysis of elliptic families. II. Dirac operators, eta invariants, and the holonomy theorem, Comm. Math. Phys., Volume 107 (1986), pp. 103-163 http://projecteuclid.org/euclid.cmp/1104115934 (ISSN: 0010-3616) | MR | Zbl
Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu, Volume 6 (2007), pp. 1-172 (ISSN: 1474-7480) | DOI | MR | Zbl
Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys., Volume 115 (1988), pp. 49-78 http://projecteuclid.org/euclid.cmp/1104160849 (ISSN: 0010-3616) | DOI | MR | Zbl
Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms, Comm. Math. Phys., Volume 115 (1988), pp. 79-126 http://projecteuclid.org/euclid.cmp/1104160850 (ISSN: 0010-3616) | DOI | MR | Zbl
Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants, Comm. Math. Phys., Volume 115 (1988), pp. 301-351 http://projecteuclid.org/euclid.cmp/1104160917 (ISSN: 0010-3616) | DOI | MR | Zbl
Institut des Hautes Études Scientifiques. Publications Mathématiques, Inst. Hautes Études Sci. Publ. Math., 74, 1991 (ISSN: 0073-8301) | Numdam | MR | Zbl
Théorie de l'intersection et théorème de Riemann-Roch arithmétiques, Séminaire Bourbaki, vol. 1990/1991, exposé no 731, Astérisque, Volume 201-203 (1991), pp. 43-88 (ISSN: 0303-1179) | Numdam | MR | Zbl
Arithmetic Chow rings and Deligne-Beilinson cohomology, J. Algebraic Geom., Volume 6 (1997), pp. 335-377 (ISSN: 1056-3911) | MR | Zbl
Complex-valued analytic torsion for flat bundles and for holomorphic bundles with connections, Comm. Pure Appl. Math., Volume 63 (2010), pp. 133-202 (ISSN: 0010-3640) | DOI | MR | Zbl
, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) (Contemp. Math.), Volume 67, Amer. Math. Soc., 1987, pp. 93-177 | DOI | MR | Zbl
Calculus on arithmetic surfaces, Ann. of Math., Volume 119 (1984), pp. 387-424 (ISSN: 0003-486X) | DOI | MR | Zbl
Analytic torsion and Prym differentials, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) (Ann. of Math. Stud.), Volume 97, Princeton Univ. Press, N.J. (1981), pp. 107-122 | DOI | MR | Zbl
Complexified Chern-Simons and Deligne's intersection bundles (in preparation)
Deligne pairings and families of rank one local systems on algebraic curves (preprint arXiv:1507.02920, to appear in Journal of Differential Geometry ) | MR
, Wiley-Interscience, 1978, 813 pages (Pure and Applied Mathematics) (ISBN: 0-471-32792-1) |An asymptotic expansion for the heat equation, Arch. Rational Mech. Anal., Volume 41 (1971), pp. 163-218 (ISSN: 0003-9527) | DOI | MR | Zbl
Arithmetic intersection theory, Inst. Hautes Études Sci. Publ. Math., Volume 72 (1990), pp. 93-174 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Characteristic classes for algebraic vector bundles with Hermitian metric. I, Ann. of Math., Volume 131 (1990), pp. 163-203 (ISSN: 0003-486X) | DOI | MR | Zbl
Characteristic classes for algebraic vector bundles with Hermitian metric. II, Ann. of Math., Volume 131 (1990), pp. 205-238 (ISSN: 0003-486X) | DOI | MR | Zbl
An arithmetic Riemann-Roch theorem, Invent. math., Volume 110 (1992), pp. 473-543 (ISSN: 0020-9910) | DOI | MR | Zbl
, Springer, 1976, 619 pages (Grundlehren der Mathematischen Wissenschaften, Band 132) |Holomorphic extensions of Laplacians and their determinants, Adv. Math., Volume 211 (2007), pp. 517-545 (ISSN: 0001-8708) | DOI | MR | Zbl
The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand., Volume 39 (1976), pp. 19-55 (ISSN: 0025-5521) | DOI | MR | Zbl
Determinants of Cauchy-Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen., Volume 19 (1985), p. 37-41, 96 (ISSN: 0374-1990) | MR | Zbl
On the anomaly formula for the Cappell-Miller holomorphic torsion, Sci. China Math., Volume 53 (2010), pp. 3225-3241 (ISSN: 1674-7283) | DOI | MR | Zbl
Stability of projective varieties, Enseign. Math., Volume 23 (1977), pp. 39-110 (ISSN: 0013-8584) | MR | Zbl
Conductor, discriminant, and the Noether formula of arithmetic surfaces, Duke Math. J., Volume 57 (1988), pp. 151-173 (ISSN: 0012-7094) | DOI | MR | Zbl
Complex powers of an elliptic operator, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc. (1967), pp. 288-307 | MR | Zbl
Géométrie d'Arakelov des surfaces arithmétiques, Séminaire Bourbaki, vol. 1988/1989, exposé no 713, Astérisque, Volume 177-178 (1989), pp. 327-343 (ISSN: 0303-1179) | Numdam | MR | Zbl
Cité par Sources :