@article{BSMF_1979__107__373_0, author = {Berg, Christian and Laub, Jesper}, title = {The resolvent for a convolution kernel satisfying the domination principle}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {373--384}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {107}, year = {1979}, doi = {10.24033/bsmf.1902}, mrnumber = {81c:31016}, zbl = {0427.31011}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/bsmf.1902/} }
TY - JOUR AU - Berg, Christian AU - Laub, Jesper TI - The resolvent for a convolution kernel satisfying the domination principle JO - Bulletin de la Société Mathématique de France PY - 1979 SP - 373 EP - 384 VL - 107 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/bsmf.1902/ DO - 10.24033/bsmf.1902 LA - en ID - BSMF_1979__107__373_0 ER -
%0 Journal Article %A Berg, Christian %A Laub, Jesper %T The resolvent for a convolution kernel satisfying the domination principle %J Bulletin de la Société Mathématique de France %D 1979 %P 373-384 %V 107 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/bsmf.1902/ %R 10.24033/bsmf.1902 %G en %F BSMF_1979__107__373_0
Berg, Christian; Laub, Jesper. The resolvent for a convolution kernel satisfying the domination principle. Bulletin de la Société Mathématique de France, Tome 107 (1979), pp. 373-384. doi : 10.24033/bsmf.1902. http://archive.numdam.org/articles/10.24033/bsmf.1902/
[1] Noyaux de convolution de Hunt et noyaux associés à une famille fondamentale, Ann. Inst. Fourier, Grenoble, t. 12, 1962, p. 643-667. | EuDML | Numdam | MR | Zbl
.-[2] Sur le principe de domination pour les noyaux de convolution, Nagoya math. J., t. 50, 1973, p. 149-173. | MR | Zbl
.-[3] Caractérisation du principe de domination pour les noyaux de convolution non-bornés, Nagoya math. J., t. 57, 1975, p. 167-197. | MR | Zbl
.-[4] Sur le principe relatif de domination pour les noyaux de convolution, Hiroshima math. J., t. 5, 1975, p. 293-350. | MR | Zbl
.-[5] Une caractérisation du principe de domination pour les noyaux de convolution, Japan. J. Math., t. 1, 1975, p. 5-35. | MR | Zbl
.-[6] Positive idempotents on a locally compact abelian group, Kodai math. Sem. Rep., t. 27, 1976, p. 181-187. | MR | Zbl
.-[7] On unicity of the Riesz decomposition of an excessive measure, Math. Scand. t. 43, 1978, p. 141-156. | EuDML | MR | Zbl
.-Cité par Sources :