@article{BSMF_2000__128_3_347_0, author = {Barbot, Thierry}, title = {Vari\'et\'es affines radiales de dimension 3}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {347--389}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {128}, number = {3}, year = {2000}, doi = {10.24033/bsmf.2373}, mrnumber = {2002f:57032}, zbl = {0954.57003}, language = {fr}, url = {http://archive.numdam.org/articles/10.24033/bsmf.2373/} }
TY - JOUR AU - Barbot, Thierry TI - Variétés affines radiales de dimension 3 JO - Bulletin de la Société Mathématique de France PY - 2000 SP - 347 EP - 389 VL - 128 IS - 3 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/bsmf.2373/ DO - 10.24033/bsmf.2373 LA - fr ID - BSMF_2000__128_3_347_0 ER -
%0 Journal Article %A Barbot, Thierry %T Variétés affines radiales de dimension 3 %J Bulletin de la Société Mathématique de France %D 2000 %P 347-389 %V 128 %N 3 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/bsmf.2373/ %R 10.24033/bsmf.2373 %G fr %F BSMF_2000__128_3_347_0
Barbot, Thierry. Variétés affines radiales de dimension 3. Bulletin de la Société Mathématique de France, Tome 128 (2000) no. 3, pp. 347-389. doi : 10.24033/bsmf.2373. http://archive.numdam.org/articles/10.24033/bsmf.2373/
[1] La classification des surfaces affines fermées d'après Benzécri et Nagano-Yagi, et la classification des tores projectifs réels. - Prépublication Universidade Federal Fluminense, 1997.
. -[2] Variétés affines radiales de dimension 3. - Prépublication Universidade Federal Fluminense, 1997.
. -[3] Variétés localement affines et projectives, Bull. Soc. Math. France, t. 88, 1960, p. 229-332. | Numdam | MR | Zbl
. -[4] Projective geometry and projective metrics. - Academic Press, 1953. | MR | Zbl
, . -[5] Flots riemanniens, Astérisque 116, 1984, p. 31-52. | Numdam | MR | Zbl
. -[6] Questions ouvertes sur les variétés affines. - Séminaire Gaston Darboux de Géométrie et de Topologie Différentielle, 1991-1992 (Montpellier), Univ. Montpellier II, 1993, p. 69-72. | MR | Zbl
. -[7] Convex decomposition of real projective surfaces. I : л-annuli and convexity, J. Diff. Geom., t. 40, 1994, p. 165-208. | MR | Zbl
. -[8] Convex decomposition of real projective surfaces. II : Admissible decompositions, J. Diff. Geom., t. 40, 1994, p. 239-283. | MR | Zbl
. -[9] Convex decomposition of real projective surfaces. III, J. Korean. Math. Soc., t. 33, 1996. | Zbl
. -[10] The decomposition and the classification of radiant affine 3-manifolds (avec un appendice par Barbot-Choi). - Prépublication dg-ga/9712006, à paraître aux Mem. Amer. Math. Soc. | Zbl
. -[11] The classification of real projective structures on compact surfaces, Bull. Amer. Math. Soc., t. 34 (2), 1997, p. 161-171. | MR | Zbl
, . -[12] Foliations with all leaves compact, Ann. Inst. Fourier, t. 26, 1976, p. 265-282. | Numdam | MR | Zbl
. -[13] Affine manifolds with nilpotent holonomy, Comment. Math. Helv., t. 56, 1981, p. 487-523. | MR | Zbl
, , . -[14] Convex real projective structures on compact surfaces, J. Diff. Geom., t. 31, 1990, p. 791-845. | MR | Zbl
. -[15] Geometric structures on manifolds and varieties of representations, in Geometry of group representations, Contemp. Math., t. 74, 1988, p. 169-198. | MR | Zbl
. -[16] Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, t. 16, 1962, p. 367-397. | Numdam | MR | Zbl
. -[17] Déformations de connexions localement plates, Ann. Inst. Fourier, t. 18, 1968, p. 103-114. | Numdam | MR | Zbl
. -[18] The affine structures on the real two-torus, Osaka J. Math., t. 11, 1974, p. 181-210. | MR | Zbl
, . -[19] Foundations of Hyperbolics Manifolds. - Graduate Texts in Mathematics 149, Springer Verlag. | Zbl
. -[20] Three-dimensional geometry and topology. - Notes, Berkeley University, 1990.
. -[21] Manifolds with canonical coordinates : some examples, Ens. Math., t. 29, 1983, p. 15-25. | MR | Zbl
, . -[22] Sur les automorphismes affines des ouverts convexes saillants, Ann. Scuol. Norm. Sup. Pisa, t. 24, 1970, p. 641-665. | Numdam | MR | Zbl
. -[23] Homogeneous cones, Trans. Moscow Math. Soc., t. 12, 1963, p. 340-403. | MR | Zbl
. -Cité par Sources :