[À propos d’une théorie de Mori sur les variétés compactes kählériennes de dimension , III]
Utilisant les résultats de la première et de la deuxième partie de ce travail, nous considérons des variétiés kählériennes minimales de dimension 3, i.e. dont le fibré canonique est nef. Alors est un fibré « good », i.e. dont la dimension de Kodaira est égale à la dimension de Kodaira numérique, sous l’exception possible que est simple, (i.e. il n’existe pas une sous-variété compacte contenant un points très general) et non Kummer. Le deuxième théorème dit que les variétés kählériennes de dimension 3 avec des singularités terminales de sorte que n’est pas nef, ont des contractions de Mori.
Based on the results of the first two parts to this paper, we prove that the canonical bundle of a minimal Kähler threefold (i.e. is nef) is good, i.e. its Kodaira dimension equals the numerical Kodaira dimension, (in particular some multiple of is generated by global sections); unless is simple. “Simple“ means that there is no compact subvariety through the very general point of and not Kummer. Moreover we show that a compact Kähler threefold with only terminal singularities whose canonical bundle is not nef, admits a contraction unless is simple with Kodaira dimension
Keywords: kähler threefolds, abundance, rational curves, Kodaira dimension
Mot clés : variétiés kählériennes, abondance, courbes rationnelles, dimension de Kodaira
@article{BSMF_2001__129_3_339_0, author = {Peternell, Thomas}, title = {Towards a {Mori} theory on compact {K\"ahler~threefolds} {III}}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {339--356}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {129}, number = {3}, year = {2001}, doi = {10.24033/bsmf.2400}, mrnumber = {1881199}, zbl = {0994.32017}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/bsmf.2400/} }
TY - JOUR AU - Peternell, Thomas TI - Towards a Mori theory on compact Kähler threefolds III JO - Bulletin de la Société Mathématique de France PY - 2001 SP - 339 EP - 356 VL - 129 IS - 3 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/bsmf.2400/ DO - 10.24033/bsmf.2400 LA - en ID - BSMF_2001__129_3_339_0 ER -
%0 Journal Article %A Peternell, Thomas %T Towards a Mori theory on compact Kähler threefolds III %J Bulletin de la Société Mathématique de France %D 2001 %P 339-356 %V 129 %N 3 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/bsmf.2400/ %R 10.24033/bsmf.2400 %G en %F BSMF_2001__129_3_339_0
Peternell, Thomas. Towards a Mori theory on compact Kähler threefolds III. Bulletin de la Société Mathématique de France, Tome 129 (2001) no. 3, pp. 339-356. doi : 10.24033/bsmf.2400. http://archive.numdam.org/articles/10.24033/bsmf.2400/
[1] « Towards a Mori theory on compact Kähler threefolds, I », Math. Nachr. 187 (1997), p. 29-59. | MR | Zbl
& -[2] -, « Complex threefolds with non-trivial holomorphic -forms », J. Alg. Geom. 9 (2000), p. 223-264. | MR | Zbl
[3] « Frobenius integrability of certain holomorphic -forms », Preprint, 2000, to appear in a volume in honour of H. Grauert. | MR
-[4] « Compact complex manifolds with numerically effective tangent bundles », J. Alg. Geom. 3 (1994), p. 295-345. | MR | Zbl
, & -[5] -, « Compact Kähler manifolds with hermitian semipositive anticanonical bundle », Comp. Math. 101 (1996), p. 217-224. | EuDML | Numdam | MR
[6] « On the structure of compact complex manifolds in class », Adv. Stud. Pure Math., vol. 1, 1983, p. 231-302. | MR | Zbl
-[7] « Kähler fiber spaces over curves », J. Math. Soc. Japan 30 (1978), p. 779-794. | MR | Zbl
-[8] « On the birational automorphism groups of algebraic varieties », Comp. Math. 63 (1987), p. 123-142. | EuDML | Numdam | MR | Zbl
-[9] Algebraic geometry, Graduate Texts in Math., vol. 52, Springer, 1977. | MR | Zbl
-[10] « Characterisation of abelian varieties », Comp. Math. 43 (1981), p. 253-276. | Numdam | MR | Zbl
-[11] -, « Pluricanonical systems on minimal algebraic varieties », Inv. Math. 79 (1985), p. 567-588. | MR | Zbl
[12] -, « Crepant blowing ups of threedimensional canonical singularities and applications to degenerations of surfaces », Ann. Math. 119 (1988), p. 603-633. | Zbl
[13] -, « Abundance theorem for minimal threefolds », Inv. Math. 108 (1992), p. 229-246. | MR | Zbl
[14] « On a characterisation of an abelian variety in the classification theory of algebraic varieties », Comp. Math. 41 (1980), p. 355-359. | Numdam | MR | Zbl
& -[15] « Projective contact manifolds », Inv. Math. 142 (2000), p. 1-15. | MR | Zbl
, , & -[16] « Flops », Nagoya Math. J. 113 (1989), p. 15-36. | MR | Zbl
-[17] -, Rational curves on algebraic varieties, Erg. d. Math., vol. 32, Springer, 1996. | MR
[18] « Fano manifolds, contact structures and quaternionic geometry », Int. J. Math. 6 (1995), p. 419-437. | MR | Zbl
-[19] « Abundance conjecture for threefolds: case », Comp. Math. 68 (1988), p. 203-220. | Numdam | MR | Zbl
-[20] « Threefolds whose canonical bundles are not numerically effective », Ann. Math. 116 (1982), p. 133-176. | MR | Zbl
-[21] -, « Flip theorem and the existence of minimal models for 3-folds », J. Amer. Math. Soc. 1 (1988), p. 117-253. | MR | Zbl
[22] « The lower semi-continuity of the plurigenera of complex varieties », Adv. Stud. Pure Math., vol. 10, 1987, p. 551-590. | MR | Zbl
-[23] « Towards a Mori theory on compact Kähler threefolds, II », Math. Ann. 311 (1998), p. 729-764. | MR | Zbl
-[24] « Canonical threefolds », Géométrie algébrique, Angers, vol. 1, Sijthoff and Noordhoff, p. 273-310. | MR | Zbl
-[25] -, « Minimal models of threefolds », Adv. Stud. Pure Math., vol. 1, 1983, p. 131-180.
[26] -, « Singular del Pezzo surfaces », Publ. RIMS 30 (1994), p. 695-728.
[27] « On compact analytic threefolds with non-trivial Albanese torus », Math. Ann. 278 (1987), p. 41-70. | MR | Zbl
-[28] « Klassifikationstheorie algebraischer Varietäten der Dimension 3 », Comp. Math. 41 (1980), p. 361-400. | Numdam | MR | Zbl
-[29] « A note on complex projective threefolds admitting holomorphic contact structures », Inv. Math. 115 (1994), p. 311-314. | MR | Zbl
-Cité par Sources :