[La dimension de Kodaira des variétés de Kummer]
Nous montrons que les variétés de Kummer de dimension et de dimension algébrique sont de dimension de Kodaira nulle.
We prove that Kummer threefolds with algebraic dimension have Kodaira dimension 0.
Keywords: kähler threefolds, Kodaira dimension
Mot clés : variétiés kählériennes, dimension de Kodaira
@article{BSMF_2001__129_3_357_0, author = {Campana, Fr\'ed\'eric and Peternell, Thomas}, title = {Appendix to the article of {T.~Peternell:} the {Kodaira} dimension of {Kummer} threefolds}, journal = {Bulletin de la Soci\'et\'e Math\'ematique de France}, pages = {357--359}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {129}, number = {3}, year = {2001}, doi = {10.24033/bsmf.2401}, mrnumber = {1881200}, zbl = {1001.32009}, language = {en}, url = {http://archive.numdam.org/articles/10.24033/bsmf.2401/} }
TY - JOUR AU - Campana, Frédéric AU - Peternell, Thomas TI - Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds JO - Bulletin de la Société Mathématique de France PY - 2001 SP - 357 EP - 359 VL - 129 IS - 3 PB - Société mathématique de France UR - http://archive.numdam.org/articles/10.24033/bsmf.2401/ DO - 10.24033/bsmf.2401 LA - en ID - BSMF_2001__129_3_357_0 ER -
%0 Journal Article %A Campana, Frédéric %A Peternell, Thomas %T Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds %J Bulletin de la Société Mathématique de France %D 2001 %P 357-359 %V 129 %N 3 %I Société mathématique de France %U http://archive.numdam.org/articles/10.24033/bsmf.2401/ %R 10.24033/bsmf.2401 %G en %F BSMF_2001__129_3_357_0
Campana, Frédéric; Peternell, Thomas. Appendix to the article of T. Peternell: the Kodaira dimension of Kummer threefolds. Bulletin de la Société Mathématique de France, Tome 129 (2001) no. 3, pp. 357-359. doi : 10.24033/bsmf.2401. http://archive.numdam.org/articles/10.24033/bsmf.2401/
[1] Algebraic methods in the global theory of complex spaces, Wiley, 1976. | MR | Zbl
& -[2] « Contributions to Riemann-Roch on projective 3-folds with only canonical singularities », Proc. Symp. Pure Math., vol. 46, 1987, p. 221-231. | MR | Zbl
-[3] Y. Kawamata., K. Matsuda & K. Matsuki - « Introduction to the minimal model problem », Adv. Stud. Pure Math., vol. 10, 1987, p. 283-360. | MR | Zbl
[4] « The Chern classes and Kodaira dimension of a minimal variety », Adv. Stud. Pure Math., vol. 10, 1987, p. 449-476. | MR | Zbl
-[5] « Minimal varieties with trivial canonical class, I », Math. Z. 217 (1994), p. 377-407. | MR | Zbl
-[6] « Young person's guide to canonical singularities, Part 1 », Proc. Symp. Pure Math., vol. 46, 1987, p. 345-414. | MR | Zbl
-[7] Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Math., vol. 439, Springer, 1975. | MR | Zbl
-Cité par Sources :