Exponentials Form a Basis of Discrete Holomorphic Functions on a Compact
Bulletin de la Société Mathématique de France, Volume 132 (2004) no. 2, pp. 305-326.

We show that discrete exponentials form a basis of discrete holomorphic functions on a finite critical map. On a combinatorially convex set, the discrete polynomials form a basis as well.

Nous montrons que les exponentielles forment une base des fonctions holomorphes discrètes sur une carte critique compacte. Sur un convexe, les polynômes discrets forment également une base.

DOI: 10.24033/bsmf.2467
Classification: 30G25, 52C26, 31C20, 39A12
Keywords: discrete holomorphic functions, discrete analytic functions, monodriffic functions, exponentials
Mot clés : fonctions holomorphes discrètes, fonctions analytiques discrètes, exponentielles
@article{BSMF_2004__132_2_305_0,
     author = {Mercat, Christian},
     title = {Exponentials {Form} a {Basis} of {Discrete} {Holomorphic} {Functions} on a {Compact}},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {305--326},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {132},
     number = {2},
     year = {2004},
     doi = {10.24033/bsmf.2467},
     mrnumber = {2076370},
     zbl = {1080.30042},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/bsmf.2467/}
}
TY  - JOUR
AU  - Mercat, Christian
TI  - Exponentials Form a Basis of Discrete Holomorphic Functions on a Compact
JO  - Bulletin de la Société Mathématique de France
PY  - 2004
SP  - 305
EP  - 326
VL  - 132
IS  - 2
PB  - Société mathématique de France
UR  - http://archive.numdam.org/articles/10.24033/bsmf.2467/
DO  - 10.24033/bsmf.2467
LA  - en
ID  - BSMF_2004__132_2_305_0
ER  - 
%0 Journal Article
%A Mercat, Christian
%T Exponentials Form a Basis of Discrete Holomorphic Functions on a Compact
%J Bulletin de la Société Mathématique de France
%D 2004
%P 305-326
%V 132
%N 2
%I Société mathématique de France
%U http://archive.numdam.org/articles/10.24033/bsmf.2467/
%R 10.24033/bsmf.2467
%G en
%F BSMF_2004__132_2_305_0
Mercat, Christian. Exponentials Form a Basis of Discrete Holomorphic Functions on a Compact. Bulletin de la Société Mathématique de France, Volume 132 (2004) no. 2, pp. 305-326. doi : 10.24033/bsmf.2467. http://archive.numdam.org/articles/10.24033/bsmf.2467/

[1] S. Agafonov & A. Bobenko - « Discrete Z γ and Painlevé equations », Internat. Math. Res. Notices (2000), no. 4, p. 165-193. | MR | Zbl

[2] A. Bobenko - « Discrete conformal maps and surfaces », Symmetries and integrability of difference equations (Canterbury, 1996), Cambridge Univ. Press, Cambridge, 1999, p. 97-108. | MR | Zbl

[3] A. Bobenko & U. Pinkall - « Discrete isothermic surfaces », J. reine angew. Math. 475 (1996), p. 187-208. | MR | Zbl

[4] A. Bobenko & R. Seiler (éds.) - Discrete integrable geometry and physics, Oxford Lecture Series in Mathematics and its Applications, vol. 16, The Clarendon Press Oxford University Press, New York, 1999. | MR | Zbl

[5] A. Bobenko & Y. Suris - « Integrable systems on quad-graphs », http://arXiv.org/abs/nlin.SI/0110004, 2001. | MR | Zbl

[6] Y. Colin De Verdière, I. Gitler & D. Vertigan - « Réseaux électriques planaires. II », Comm. Math. Helv. 71 (1996), no. 1, p. 144-167. | MR | Zbl

[7] R. Duffin - « Basic properties of discrete analytic functions », Duke Math. J. 23 (1956), p. 335-363. | MR | Zbl

[8] -, « Potential theory on a rhombic lattice », J. Comb. Theory 5 (1968), p. 258-272. | MR | Zbl

[9] U. Hertrich-Jeromin - Introduction to Möbius Differential Geometry, London Mathematical Society Lecture Note Series, vol. 300, Cambridge University Press, Cambridge, 2003. | MR | Zbl

[10] R. Kenyon - « The Laplacian and Dirac operators on critical planar graphs », Invent. Math. 150 (2002), no. 2, p. 409-439, http://arXiv.org/abs/math-ph/0202018. | MR | Zbl

[11] C. Mercat - « Discrete Period Matrices and Related Topics », http://arXiv.org/abs/math-ph/0111043.

[12] -, « Discrete Polynomials and Discrete Holomorphic Approximation », http://arXiv.org/abs/math-ph/0206041.

[13] -, « Discrete Riemann surfaces and the Ising model », Comm. Math. Phys. 218 (2001), no. 1, p. 177-216. | MR | Zbl

Cited by Sources: