On the Kähler Rank of Compact Complex Surfaces
[Sur le rang de Kähler des surfaces complexes compactes]
Bulletin de la Société Mathématique de France, Tome 136 (2008) no. 2, pp. 243-260.

Harvey et Lawson ont introduit et calculé le rang de Kähler en relation avec le cône des courants positifs fermés de bidimension (1,1) pour beaucoup de classes de surfaces complexes compactes. Dans ce travail nous étendons ces calculs à la seule classe de surfaces connues et qui n’avait pas été considérée par eux, celle des surfaces de Kato. Notre outil principal est la réduction à la dynamique des contractions holomorphes ( 2 ,0)( 2 ,0) associées.

Harvey and Lawson introduced the Kähler rank and computed it in connection to the cone of positive exact currents of bidimension (1,1) for many classes of compact complex surfaces. In this paper we extend these computations to the only further known class of surfaces not considered by them, that of Kato surfaces. Our main tool is the reduction to the dynamics of associated holomorphic contractions ( 2 ,0)( 2 ,0).

DOI : https://doi.org/10.24033/bsmf.2556
Classification : 32J15,  32H50
Mots clés : surface complexe compacte, coquille sphérique globale, courant positif fermé, itération des applications polynômiales
@article{BSMF_2008__136_2_243_0,
     author = {Toma, Matei},
     title = {On the {K\"ahler} {Rank} of {Compact} {Complex} {Surfaces}},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {243--260},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {136},
     number = {2},
     year = {2008},
     doi = {10.24033/bsmf.2556},
     zbl = {1165.32010},
     mrnumber = {2415343},
     language = {en},
     url = {http://archive.numdam.org/articles/10.24033/bsmf.2556/}
}
TY  - JOUR
AU  - Toma, Matei
TI  - On the Kähler Rank of Compact Complex Surfaces
JO  - Bulletin de la Société Mathématique de France
PY  - 2008
DA  - 2008///
SP  - 243
EP  - 260
VL  - 136
IS  - 2
PB  - Société mathématique de France
UR  - http://archive.numdam.org/articles/10.24033/bsmf.2556/
UR  - https://zbmath.org/?q=an%3A1165.32010
UR  - https://www.ams.org/mathscinet-getitem?mr=2415343
UR  - https://doi.org/10.24033/bsmf.2556
DO  - 10.24033/bsmf.2556
LA  - en
ID  - BSMF_2008__136_2_243_0
ER  - 
Toma, Matei. On the Kähler Rank of Compact Complex Surfaces. Bulletin de la Société Mathématique de France, Tome 136 (2008) no. 2, pp. 243-260. doi : 10.24033/bsmf.2556. http://archive.numdam.org/articles/10.24033/bsmf.2556/

[1] W. P. Barth, K. Hulek, C. A. M. Peters & A. Van De Ven - Compact complex surfaces, second éd., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 4, Springer, 2004. | MR 2030225 | Zbl 0718.14023

[2] J.-P. Demailly - « Complex analytic and algebraic geometry », http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf, 2007.

[3] G. Dloussky - « Structure des surfaces de Kato », Mém. Soc. Math. France (N.S.) (1984), p. 120. | EuDML 94835 | Numdam | MR 763959 | Zbl 0543.32012

[4] -, « Sur la classification des germes d'applications holomorphes contractantes », Math. Ann. 280 (1988), p. 649-661. | EuDML 164390 | MR 939924 | Zbl 0677.32004

[5] G. Dloussky & K. Oeljeklaus - « Vector fields and foliations on compact surfaces of class VII 0 », Ann. Inst. Fourier (Grenoble) 49 (1999), p. 1503-1545. | EuDML 75392 | Numdam | MR 1723825 | Zbl 0978.32021

[6] C. Favre - « Classification of 2-dimensional contracting rigid germs and Kato surfaces. I », J. Math. Pures Appl. (9) 79 (2000), p. 475-514. | MR 1759437 | Zbl 0983.32023

[7] H. Grauert & R. Remmert - « Plurisubharmonische Funktionen in komplexen Räumen », Math. Z. 65 (1956), p. 175-194. | EuDML 169593 | MR 81960 | Zbl 0070.30403

[8] R. Harvey & H. B. Lawson, Jr. - « An intrinsic characterization of Kähler manifolds », Invent. Math. 74 (1983), p. 169-198. | EuDML 143068 | MR 723213 | Zbl 0553.32008

[9] M. Kato - « Compact complex manifolds containing “global” spherical shells », Proc. Japan Acad. 53 (1977), p. 15-16. | MR 440076 | Zbl 0379.32023

[10] A. Lamari - « Courants kählériens et surfaces compactes », Ann. Inst. Fourier (Grenoble) 49 (1999), p. 263-285. | Numdam | MR 1688140 | Zbl 0926.32026

[11] -, « Le cône kählérien d'une surface », J. Math. Pures Appl. (9) 78 (1999), p. 249-263. | Zbl 0941.32007

[12] M. Meo - « Image inverse d'un courant positif fermé par une application analytique surjective », C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), p. 1141-1144. | MR 1396655 | Zbl 0858.32012

[13] I. Nakamura - « On surfaces of class VII 0 with curves. II », Tohoku Math. J. (2) 42 (1990), p. 475-516. | MR 1076173 | Zbl 0732.14019

Cité par Sources :