Boundedness of minimizers for spectral problems in N
Rendiconti del Seminario Matematico della Università di Padova, Tome 135 (2016), pp. 207-221.

In [8] it was proved that any increasing functional of the fi rst k eigenvalues of the Dirichlet Laplacian admits a (quasi-)open minimizer among the subsets of N of unit measure. In this paper we show that every minimizer is uniformly bounded by a constant depending only on k,N.

DOI : 10.4171/RSMUP/135-12
Classification : 49, 65
Mots clés : Shape optimization, Dirichlet Laplacian, eigenvalues, spectral problems
Mazzoleni, Dario 1

1 Università degli Studi di Torino, TORINO, ITALY
@article{RSMUP_2016__135__207_0,
     author = {Mazzoleni, Dario},
     title = {Boundedness of minimizers for spectral problems in $\mathbb R^N$},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {207--221},
     publisher = {European Mathematical Society Publishing House},
     address = {Zuerich, Switzerland},
     volume = {135},
     year = {2016},
     doi = {10.4171/RSMUP/135-12},
     url = {http://archive.numdam.org/articles/10.4171/RSMUP/135-12/}
}
TY  - JOUR
AU  - Mazzoleni, Dario
TI  - Boundedness of minimizers for spectral problems in $\mathbb R^N$
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2016
SP  - 207
EP  - 221
VL  - 135
PB  - European Mathematical Society Publishing House
PP  - Zuerich, Switzerland
UR  - http://archive.numdam.org/articles/10.4171/RSMUP/135-12/
DO  - 10.4171/RSMUP/135-12
ID  - RSMUP_2016__135__207_0
ER  - 
%0 Journal Article
%A Mazzoleni, Dario
%T Boundedness of minimizers for spectral problems in $\mathbb R^N$
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2016
%P 207-221
%V 135
%I European Mathematical Society Publishing House
%C Zuerich, Switzerland
%U http://archive.numdam.org/articles/10.4171/RSMUP/135-12/
%R 10.4171/RSMUP/135-12
%F RSMUP_2016__135__207_0
Mazzoleni, Dario. Boundedness of minimizers for spectral problems in $\mathbb R^N$. Rendiconti del Seminario Matematico della Università di Padova, Tome 135 (2016), pp. 207-221. doi : 10.4171/RSMUP/135-12. http://archive.numdam.org/articles/10.4171/RSMUP/135-12/

Cité par Sources :