Interacting Fock spaces connect the study of quantum probability theory, classical random variables, and orthogonal polynomials. They are pre-Hilbert spaces associated with creation, preservation, and annihilation processes. We prove that if three processes are asymptotically commutative, the arcsine law arises as the “large quantum number limits.” As a corollary, it is shown that for many probability measures, the asymptotic behavior of orthogonal polynomials is described by the arcsine function. A weaker form of asymptotic commutativity provides us with a discretized arcsine law, which is described by the Bessel functions of the fi�rst kind.
Accepté le :
Publié le :
DOI : 10.4171/aihpd/34
Publié le :
DOI : 10.4171/aihpd/34
Classification :
46-XX, 33-XX, 60-XX, 81-XX
Mots-clés : Noncommutative probability arcsine law, interacting Fock space
Mots-clés : Noncommutative probability arcsine law, interacting Fock space
@article{AIHPD_2016__3_4_405_0, author = {Saigo, Hayato and Sako, Hiroki}, title = {The arcsine law and an asymptotic behavior of orthogonal polynomials}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {405--427}, volume = {3}, number = {4}, year = {2016}, doi = {10.4171/aihpd/34}, zbl = {1372.46048}, language = {en}, url = {http://archive.numdam.org/articles/10.4171/aihpd/34/} }
TY - JOUR AU - Saigo, Hayato AU - Sako, Hiroki TI - The arcsine law and an asymptotic behavior of orthogonal polynomials JO - Annales de l’Institut Henri Poincaré D PY - 2016 SP - 405 EP - 427 VL - 3 IS - 4 UR - http://archive.numdam.org/articles/10.4171/aihpd/34/ DO - 10.4171/aihpd/34 LA - en ID - AIHPD_2016__3_4_405_0 ER -
%0 Journal Article %A Saigo, Hayato %A Sako, Hiroki %T The arcsine law and an asymptotic behavior of orthogonal polynomials %J Annales de l’Institut Henri Poincaré D %D 2016 %P 405-427 %V 3 %N 4 %U http://archive.numdam.org/articles/10.4171/aihpd/34/ %R 10.4171/aihpd/34 %G en %F AIHPD_2016__3_4_405_0
Saigo, Hayato; Sako, Hiroki. The arcsine law and an asymptotic behavior of orthogonal polynomials. Annales de l’Institut Henri Poincaré D, Tome 3 (2016) no. 4, pp. 405-427. doi : 10.4171/aihpd/34. http://archive.numdam.org/articles/10.4171/aihpd/34/
Cité par Sources :