Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 2, pp. 217-242.

In this paper, using techniques of value distribution theory, we give a uniqueness theorem for meromorphic mappings of m into P n with truncated multiplicities and “few" targets. We also give a theorem of linear degeneration for such maps with truncated multiplicities and moving targets.

Dans cet article, on donne un théorème d’unicité pour des applications méromorphes de m dans P n avec multiplicités coupées et avec « peu de » cibles. On donne aussi un théorème de dégénération linéaire pour des telles applications avec multiplicités coupées et avec des cibles mobiles. Les preuves utilisent des techniques de la distribution des valeurs.

DOI: 10.5802/afst.1120
Dethloff, Gerd 1; Tan, Tran Van 1

1 Université de Bretagne Occidentale, UFR Sciences et Techniques, Département de Mathématiques, 6, avenue Le Gorgeu, BP 452, 29275 Brest Cedex (France).
@article{AFST_2006_6_15_2_217_0,
     author = {Dethloff, Gerd and Tan, Tran Van},
     title = {Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {217--242},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 15},
     number = {2},
     year = {2006},
     doi = {10.5802/afst.1120},
     zbl = {1111.32016},
     mrnumber = {2244216},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/afst.1120/}
}
TY  - JOUR
AU  - Dethloff, Gerd
AU  - Tan, Tran Van
TI  - Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2006
SP  - 217
EP  - 242
VL  - 15
IS  - 2
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://archive.numdam.org/articles/10.5802/afst.1120/
DO  - 10.5802/afst.1120
LA  - en
ID  - AFST_2006_6_15_2_217_0
ER  - 
%0 Journal Article
%A Dethloff, Gerd
%A Tan, Tran Van
%T Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2006
%P 217-242
%V 15
%N 2
%I Université Paul Sabatier, Institut de mathématiques
%C Toulouse
%U http://archive.numdam.org/articles/10.5802/afst.1120/
%R 10.5802/afst.1120
%G en
%F AFST_2006_6_15_2_217_0
Dethloff, Gerd; Tan, Tran Van. Uniqueness problem for meromorphic mappings with truncated multiplicities and few targets. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 15 (2006) no. 2, pp. 217-242. doi : 10.5802/afst.1120. http://archive.numdam.org/articles/10.5802/afst.1120/

[1] Dethloff, G.; Tran Van Tan Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets, 2004 (Preprint math.CV/0405557)

[2] Dethloff, G.; Tran Van Tan An extension of uniqueness theorems for meromorphic mappings, 2004 (Preprint math.CV/0405558)

[3] Fujimoto, H. The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J., Volume 58 (1975), pp. 1-23 | MR | Zbl

[4] Fujimoto, H. Uniqueness problem with truncated multiplicities in value distribution theory, Nagoya Math. J., Volume 152 (1998), pp. 131-152 | MR | Zbl

[5] Fujimoto, H. Uniqueness problem with truncated multiplicities in value distribution theory, II, Nagoya Math. J., Volume 155 (1999), pp. 161-188 | MR | Zbl

[6] Ji, S. Uniqueness problem without multiplicities in value distribution theory, Pacific J. Math., Volume 135 (1988), pp. 323-348 | MR | Zbl

[7] Manh, D. Q. Unique range sets for holomorphic curves, Acta Math. Vietnam, Volume 27 (2002), pp. 343-348 | MR | Zbl

[8] Nevanlinna, R. Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta. Math., Volume 48 (1926), pp. 367-391

[9] Ru, M.; Stoll, W. The Second Main Theorem for moving targets, J. Geom. Anal., Volume 1 (1991), pp. 99-138 | MR | Zbl

[10] Ru, M. A uniqueness theorem with moving targets without counting multiplicity, Proc. Amer. Math. Soc., Volume 129 (2002), pp. 2701-2707 | MR | Zbl

[11] Smiley, L. Geometric conditions for unicity of holomorphic curves, Contemp. Math., Volume 25 (1983), pp. 149-154 | MR | Zbl

[12] Tu, Z.-H. Uniqueness problem of meromorphic mappings in several complex variables for moving targets, Tohoku Math. J., Volume 54 (2002), pp. 567-579 | MR | Zbl

[13] Yao, W. Two meromorphic functions sharing five small functions in the sense E ¯ (k) (β,f)=E ¯ (k) (β,g), Nagoya Math. J., Volume 167 (2002), pp. 35-54 | MR | Zbl

Cited by Sources: