Soit
Consider a compact subset
@article{AFST_2006_6_15_3_599_0, author = {Marshall, Murray}, title = {Representations of non-negative polynomials having finitely many zeros}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {599--609}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 15}, number = {3}, year = {2006}, doi = {10.5802/afst.1131}, zbl = {1130.13015}, mrnumber = {2246416}, language = {en}, url = {https://www.numdam.org/articles/10.5802/afst.1131/} }
TY - JOUR AU - Marshall, Murray TI - Representations of non-negative polynomials having finitely many zeros JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2006 SP - 599 EP - 609 VL - 15 IS - 3 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - https://www.numdam.org/articles/10.5802/afst.1131/ DO - 10.5802/afst.1131 LA - en ID - AFST_2006_6_15_3_599_0 ER -
%0 Journal Article %A Marshall, Murray %T Representations of non-negative polynomials having finitely many zeros %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2006 %P 599-609 %V 15 %N 3 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U https://www.numdam.org/articles/10.5802/afst.1131/ %R 10.5802/afst.1131 %G en %F AFST_2006_6_15_3_599_0
Marshall, Murray. Representations of non-negative polynomials having finitely many zeros. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 15 (2006) no. 3, pp. 599-609. doi : 10.5802/afst.1131. https://www.numdam.org/articles/10.5802/afst.1131/
[1] A representation theorem for certain partially ordered commutative rings, Math. Zeit., Volume 237 (2001), pp. 223-235 | MR | Zbl
[2] Distinguished presentations of strictly positive polynomials, J. reine angew. Math., Volume 532 (2001), pp. 223-235 | MR | Zbl
[3] Positivity, sums of squares and the multi-dimensional moment problem II (Advances in Geometry, to appear) | MR | Zbl
[4] Optimization globale et théorie des moments, C. R. Acad. Sci. Paris, Série I, Volume 331 (2000), pp. 929-934 | MR | Zbl
[5] Optimization of polynomial functions, Canad. Math. Bull., Volume 46 (2003), pp. 575-587 | MR | Zbl
[6] Positive polynomials and sums of squares, Univ. Pisa (2000) (Ph. D. Thesis Dottorato de Ricerca in Matematica)
[7] Positive Polynomials: From Hilbert’s 17th problem to real algebra, Springer Monographs in Mathematics, 2001 | MR | Zbl
[8] Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., Volume 42 (1993), pp. 969-984 | MR | Zbl
[9] Sums of squares of regular functions on real algebraic varieties, Trans. Amer. Math. Soc., Volume 352 (1999), pp. 1039-1069 | MR | Zbl
[10] Sums of squares on real algebraic curves, Math. Zeit., Volume 245 (2003), pp. 725-760 | MR | Zbl
[11] Distinguished representations of non-negative polynomials (to appear) | MR | Zbl
[12] The
- On Łojasiewicz inequalities and the effective Putinar's Positivstellensatz, Journal of Algebra, Volume 662 (2025), p. 741 | DOI:10.1016/j.jalgebra.2024.08.022
- Exact moment representation in polynomial optimization, Journal of Symbolic Computation, Volume 129 (2025), p. 102403 | DOI:10.1016/j.jsc.2024.102403
- Finite convergence of the Moment-SOS hierarchy for polynomial matrix optimization, Mathematical Programming (2025) | DOI:10.1007/s10107-025-02199-z
- Sum-of-Squares Proofs of Logarithmic Sobolev Inequalities on Finite Markov Chains, IEEE Transactions on Information Theory, Volume 70 (2024) no. 2, p. 803 | DOI:10.1109/tit.2023.3338292
- On the hardness of deciding the finite convergence of Lasserre hierarchies, Numerical Algebra, Control and Optimization, Volume 0 (2024) no. 0, p. 0 | DOI:10.3934/naco.2024024
- Finite Convergence of Moment-SOS Relaxations with Nonreal Radical Ideals, SIAM Journal on Optimization, Volume 34 (2024) no. 4, p. 3399 | DOI:10.1137/23m1605430
- Copositive Matrices, Sums of Squares and the Stability Number of a Graph, Polynomial Optimization, Moments, and Applications, Volume 206 (2023), p. 113 | DOI:10.1007/978-3-031-38659-6_4
- Finite Convergence of Sum-of-Squares Hierarchies for the Stability Number of a Graph, SIAM Journal on Optimization, Volume 32 (2022) no. 2, p. 491 | DOI:10.1137/21m140345x
- A survey on conic relaxations of optimal power flow problem, European Journal of Operational Research, Volume 287 (2020) no. 2, p. 391 | DOI:10.1016/j.ejor.2020.01.034
- Conic optimization for control, energy systems, and machine learning: Applications and algorithms, Annual Reviews in Control, Volume 47 (2019), p. 323 | DOI:10.1016/j.arcontrol.2018.11.002
- , 2018 Annual American Control Conference (ACC) (2018), p. 798 | DOI:10.23919/acc.2018.8430887
- Semidefinite relaxations for semi-infinite polynomial programming, Computational Optimization and Applications, Volume 58 (2014) no. 1, p. 133 | DOI:10.1007/s10589-013-9612-1
- Minimizing rational functions by exact Jacobian SDP relaxation applicable to finite singularities, Journal of Global Optimization, Volume 58 (2014) no. 2, p. 261 | DOI:10.1007/s10898-013-0047-0
- Optimality conditions and finite convergence of Lasserre’s hierarchy, Mathematical Programming, Volume 146 (2014) no. 1-2, p. 97 | DOI:10.1007/s10107-013-0680-x
- Positivity and Sums of Squares: A Guide to Recent Results, Emerging Applications of Algebraic Geometry, Volume 149 (2009), p. 271 | DOI:10.1007/978-0-387-09686-5_8
- On the complexity of Putinar's Positivstellensatz, Journal of Complexity, Volume 23 (2007) no. 1, p. 135 | DOI:10.1016/j.jco.2006.07.002
Cité par 16 documents. Sources : Crossref