Dans cet article nous démontrons que toute courbe entière dans une hypersurface générique de degré dans est algébriquement dégénérée i.e il existe une sous-variété propre qui contient la courbe entière.
In this article we prove that every entire curve in a generic hypersurface of degree in is algebraically degenerated i.e there exists a proper subvariety which contains the entire curve.
@article{AFST_2007_6_16_2_369_0, author = {Rousseau, Erwan}, title = {Weak analytic hyperbolicity of generic hypersurfaces of high degree in $\mathbb{P}^{4}$}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {369--383}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 16}, number = {2}, year = {2007}, doi = {10.5802/afst.1152}, mrnumber = {2331545}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/afst.1152/} }
TY - JOUR AU - Rousseau, Erwan TI - Weak analytic hyperbolicity of generic hypersurfaces of high degree in $\mathbb{P}^{4}$ JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2007 SP - 369 EP - 383 VL - 16 IS - 2 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://archive.numdam.org/articles/10.5802/afst.1152/ DO - 10.5802/afst.1152 LA - en ID - AFST_2007_6_16_2_369_0 ER -
%0 Journal Article %A Rousseau, Erwan %T Weak analytic hyperbolicity of generic hypersurfaces of high degree in $\mathbb{P}^{4}$ %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2007 %P 369-383 %V 16 %N 2 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://archive.numdam.org/articles/10.5802/afst.1152/ %R 10.5802/afst.1152 %G en %F AFST_2007_6_16_2_369_0
Rousseau, Erwan. Weak analytic hyperbolicity of generic hypersurfaces of high degree in $\mathbb{P}^{4}$. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 16 (2007) no. 2, pp. 369-383. doi : 10.5802/afst.1152. http://archive.numdam.org/articles/10.5802/afst.1152/
[1] Bogomolov (F.A.).— Holomorphic tensors and vector bundles on projective varieties, Math. USSR Izvestija 13, p. 499-555 (1979). | Zbl
[2] Clemens (H.).— Curves on generic hypersurface, Ann. Sci. Ec. Norm. Sup., 19, p. 629-636 (1986). | Numdam | MR | Zbl
[3] Demailly (J.-P.).— Algebraic criteria for Kobayashi hyperbolic projective varieties and jet differentials, Proc. Sympos. Pure Math., vol.62, Amer. Math.Soc., Providence, RI, p.285-360 ( 1997). | MR | Zbl
[4] Demailly (J.-P.), El Goul J..— Hyperbolicity of generic surfaces of high degree in projective 3-space, Amer. J. Math 122, p. 515-546 (2000). | MR | Zbl
[5] Ein (L.).— Subvarieties of generic complete intersections, Invent. Math., 94, p. 163-169 (1988). | MR | Zbl
[6] Fulton (W.).— Intersection theory, Springer-Verlag, Berlin (1998). | MR | Zbl
[7] Green (M.), Griffiths P..— Two applications of algebraic geometry to entire holomorphic mappings, The Chern Symposium 1979, Proc. Inter. Sympos. Berkeley, CA, 1979, Springer-Verlag, New-York, p. 41-74 (1980). | MR | Zbl
[8] Kobayashi (S.).— Hyperbolic manifolds and holomorphic mappings, Marcel Dekker, New York (1970). | MR | Zbl
[9] McQuillan (M.).— Diophantine approximations and foliations, in Publ. Math. IHES (1998). | Numdam | MR | Zbl
[10] Paun (M.).— Vector fields on the total space of hypersurfaces in the projective space and hyperbolicity, preprint (2005).
[11] Rousseau (E.).— Etude des jets de Demailly-Semple en dimension 3, Ann. Inst. Fourier, 56, p. 397-421 (2006). | Numdam | MR | Zbl
[12] Rousseau (E.).— Equations différentielles sur les hypersurfaces de , to appear in J. Math. Pures Appl. (2006). | MR | Zbl
[13] Siu (Y.-T.).— Hyperbolicity in complex geometry, The legacy of Niels Henrik Abel, Springer, Berlin, p. 543-566 (2004). | MR | Zbl
[14] Voisin (C.).— On a conjecture of Clemens on rational curves on hypersurfaces, J. Diff. Geom., 44, p. 200-213 (1996). | MR | Zbl
Cité par Sources :