Dans ce travail nous continuons l’étude de l’asymptotique de Weyl de la distribution des valeurs propres d’opérateurs (pseudo-)différentiels avec des perturbations aléatoires petites, en traitant le cas des perturbations multiplicatives en dimension quelconque. Nous avons été amenés à faire des améliorations essentielles des aspects probabilistes.
In this work we continue the study of the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint (pseudo)differential operators with small random perturbations, by treating the case of multiplicative perturbations in arbitrary dimension. We were led to quite essential improvements of many of the probabilistic aspects.
@article{AFST_2009_6_18_4_739_0, author = {Sj\"ostrand, Johannes}, title = {Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {739--795}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 18}, number = {4}, year = {2009}, doi = {10.5802/afst.1223}, zbl = {1194.47058}, mrnumber = {2590387}, language = {en}, url = {https://www.numdam.org/articles/10.5802/afst.1223/} }
TY - JOUR AU - Sjöstrand, Johannes TI - Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2009 SP - 739 EP - 795 VL - 18 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - https://www.numdam.org/articles/10.5802/afst.1223/ DO - 10.5802/afst.1223 LA - en ID - AFST_2009_6_18_4_739_0 ER -
%0 Journal Article %A Sjöstrand, Johannes %T Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2009 %P 739-795 %V 18 %N 4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U https://www.numdam.org/articles/10.5802/afst.1223/ %R 10.5802/afst.1223 %G en %F AFST_2009_6_18_4_739_0
Sjöstrand, Johannes. Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 18 (2009) no. 4, pp. 739-795. doi : 10.5802/afst.1223. https://www.numdam.org/articles/10.5802/afst.1223/
[1] Bordeaux-Montrieux (W.).— Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, Thesis, CMLS, Ecole Polytechnique, 2008. http://pastel.paristech.org/5367/.
[2] Dimassi (M.), Sjöstrand (J.).— Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Notes Ser., 268, Cambridge Univ. Press, (1999). | MR | Zbl
[3] Gohberg (I.C.), Krein (M.G.).— Introduction to the theory of linear non-selfadjoint operators, Translations of mathematical monographs, Vol 18, AMS, Providence, R.I. (1969). | MR | Zbl
[4] Grigis (A.), Sjöstrand (J.).— Microlocal analysis for differential operators, London Math. Soc. Lecture Notes Ser., 196, Cambridge Univ. Press, (1994). | MR | Zbl
[5] Hager (M.).— Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints. I. Un modèle, Ann. Fac. Sci. Toulouse Math. (6)15(2), p. 243-280 (2006). | Numdam | MR | Zbl
[6] Hager (M.).— Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré, 7(6), p. 1035-1064 (2006). | MR | Zbl
[7] Hager (M.), Sjöstrand (J.).— Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators, Math. Annalen, 342(1), p. 177-243 (2008). | MR | Zbl
[8] Hörmander (L.).— Fourier integral operators I, Acta Math., 127, p. 79-183 (1971). | MR | Zbl
[9] Iantchenko (A.), Sjöstrand (J.), Zworski (M.).— Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett. 9(2-3), p. 337-362 (2002). | MR
[10] Seeley (R.T.).— Complex powers of an elliptic operator. 1967 Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) p. 288-307 Amer. Math. Soc., Providence, R.I. | MR | Zbl
[11] Sjöstrand (J.).— Resonances for bottles and trace formulae, Math. Nachr., 221, p. 95-149 (2001). | MR | Zbl
[12] Sjöstrand (J.), Vodev (G.).— Asymptotics of the number of Rayleigh resonances, Math. Ann. 309, p. 287-306 (1997). | MR | Zbl
[13] Sjöstrand (J.), Zworski (M.).— Fractal upper bounds on the density of semiclassical resonances, Duke Math J, 137(3), p. 381-459 (2007). | MR
[14] Sjöstrand (J.), Zworski (M.).— Elementary linear algebra for advanced spectral problems, Annales Inst. Fourier, 57(7), p. 2095-2141 (2007). | Numdam | MR | Zbl
[15] Wunsch (J.), Zworski (M.).— The FBI transform on compact
- Pseudospectra and eigenvalue asymptotics for disordered non-selfadjoint operators in the semiclassical limit, Frontiers in Applied Mathematics and Statistics, Volume 10 (2024) | DOI:10.3389/fams.2024.1508973
- Partial Data Inverse Problem for Hyperbolic Equation with Time-Dependent Damping Coefficient and Potential, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 4, p. 5678 | DOI:10.1137/23m1588676
- Introduction, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Volume 14 (2019), p. 1 | DOI:10.1007/978-3-030-10819-9_1
- Resolvent Estimates Near the Boundary of the Range of the Symbol, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Volume 14 (2019), p. 191 | DOI:10.1007/978-3-030-10819-9_10
- Distribution of Eigenvalues for Semi-classical Elliptic Operators with Small Random Perturbations, Results and Outline, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Volume 14 (2019), p. 313 | DOI:10.1007/978-3-030-10819-9_15
- Proof I: Upper Bounds, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Volume 14 (2019), p. 329 | DOI:10.1007/978-3-030-10819-9_16
- Proof II: Lower Bounds, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Volume 14 (2019), p. 363 | DOI:10.1007/978-3-030-10819-9_17
- Spectral Asymptotics for
Symmetric Operators, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Volume 14 (2019), p. 427 | DOI:10.1007/978-3-030-10819-9_19 - Inverse Problems for Magnetic Schrödinger Operators in Transversally Anisotropic Geometries, Communications in Mathematical Physics, Volume 361 (2018) no. 2, p. 525 | DOI:10.1007/s00220-018-3182-0
- The Precise Shape of the Eigenvalue Intensity for a Class of Non-Self-Adjoint Operators Under Random Perturbations, Annales Henri Poincaré, Volume 18 (2017) no. 2, p. 435 | DOI:10.1007/s00023-016-0528-z
- Two Point Eigenvalue Correlation for a Class of Non-Selfadjoint Operators Under Random Perturbations, Communications in Mathematical Physics, Volume 350 (2017) no. 1, p. 31 | DOI:10.1007/s00220-016-2745-1
- Spectral statistics of non-selfadjoint operators subject to small random perturbations, Séminaire Laurent Schwartz — EDP et applications (2017), p. 1 | DOI:10.5802/slsedp.113
- Fractal Weyl law for open quantum chaotic maps, Annals of Mathematics, Volume 179 (2014) no. 1, p. 179 | DOI:10.4007/annals.2014.179.1.3
- Spectral monodromy of non-self-adjoint operators, Journal of Mathematical Physics, Volume 55 (2014) no. 1 | DOI:10.1063/1.4855475
- PT Symmetry and Weyl Asymptotics, The Mathematical Legacy of Leon Ehrenpreis, Volume 16 (2012), p. 299 | DOI:10.1007/978-88-470-1947-8_19
- Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 19 (2011) no. 3-4, p. 567 | DOI:10.5802/afst.1257
- Eigenvalue distributions and Weyl laws for semiclassical non-self-adjoint operators in 2 dimensions, Geometric Aspects of Analysis and Mechanics, Volume 292 (2011), p. 345 | DOI:10.1007/978-0-8176-8244-6_12
- Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 19 (2010) no. 2, p. 277 | DOI:10.5802/afst.1244
- Counting zeros of holomorphic functions of exponential growth, Journal of Pseudo-Differential Operators and Applications, Volume 1 (2010) no. 1, p. 75 | DOI:10.1007/s11868-010-0006-1
Cité par 19 documents. Sources : Crossref