Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 18 (2009) no. 4, pp. 739-795.

Dans ce travail nous continuons l’étude de l’asymptotique de Weyl de la distribution des valeurs propres d’opérateurs (pseudo-)différentiels avec des perturbations aléatoires petites, en traitant le cas des perturbations multiplicatives en dimension quelconque. Nous avons été amenés à faire des améliorations essentielles des aspects probabilistes.

In this work we continue the study of the Weyl asymptotics of the distribution of eigenvalues of non-self-adjoint (pseudo)differential operators with small random perturbations, by treating the case of multiplicative perturbations in arbitrary dimension. We were led to quite essential improvements of many of the probabilistic aspects.

DOI : 10.5802/afst.1223
Sjöstrand, Johannes 1

1 IMB, Université de Bourgogne, 9, av. A. Savary, BP 47870, FR-21078 Dijon cedex and UMR 5584 du CNRS
@article{AFST_2009_6_18_4_739_0,
     author = {Sj\"ostrand, Johannes},
     title = {Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {739--795},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 18},
     number = {4},
     year = {2009},
     doi = {10.5802/afst.1223},
     zbl = {1194.47058},
     mrnumber = {2590387},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/afst.1223/}
}
TY  - JOUR
AU  - Sjöstrand, Johannes
TI  - Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2009
SP  - 739
EP  - 795
VL  - 18
IS  - 4
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - https://www.numdam.org/articles/10.5802/afst.1223/
DO  - 10.5802/afst.1223
LA  - en
ID  - AFST_2009_6_18_4_739_0
ER  - 
%0 Journal Article
%A Sjöstrand, Johannes
%T Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2009
%P 739-795
%V 18
%N 4
%I Université Paul Sabatier, Institut de mathématiques
%C Toulouse
%U https://www.numdam.org/articles/10.5802/afst.1223/
%R 10.5802/afst.1223
%G en
%F AFST_2009_6_18_4_739_0
Sjöstrand, Johannes. Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 18 (2009) no. 4, pp. 739-795. doi : 10.5802/afst.1223. https://www.numdam.org/articles/10.5802/afst.1223/

[1] Bordeaux-Montrieux (W.).— Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, Thesis, CMLS, Ecole Polytechnique, 2008. http://pastel.paristech.org/5367/.

[2] Dimassi (M.), Sjöstrand (J.).— Spectral asymptotics in the semi-classical limit, London Math. Soc. Lecture Notes Ser., 268, Cambridge Univ. Press, (1999). | MR | Zbl

[3] Gohberg (I.C.), Krein (M.G.).— Introduction to the theory of linear non-selfadjoint operators, Translations of mathematical monographs, Vol 18, AMS, Providence, R.I. (1969). | MR | Zbl

[4] Grigis (A.), Sjöstrand (J.).— Microlocal analysis for differential operators, London Math. Soc. Lecture Notes Ser., 196, Cambridge Univ. Press, (1994). | MR | Zbl

[5] Hager (M.).— Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints. I. Un modèle, Ann. Fac. Sci. Toulouse Math. (6)15(2), p. 243-280 (2006). | Numdam | MR | Zbl

[6] Hager (M.).— Instabilité spectrale semiclassique d’opérateurs non-autoadjoints. II. Ann. Henri Poincaré, 7(6), p. 1035-1064 (2006). | MR | Zbl

[7] Hager (M.), Sjöstrand (J.).— Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators, Math. Annalen, 342(1), p. 177-243 (2008). | MR | Zbl

[8] Hörmander (L.).— Fourier integral operators I, Acta Math., 127, p. 79-183 (1971). | MR | Zbl

[9] Iantchenko (A.), Sjöstrand (J.), Zworski (M.).— Birkhoff normal forms in semi-classical inverse problems, Math. Res. Lett. 9(2-3), p. 337-362 (2002). | MR

[10] Seeley (R.T.).— Complex powers of an elliptic operator. 1967 Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) p. 288-307 Amer. Math. Soc., Providence, R.I. | MR | Zbl

[11] Sjöstrand (J.).— Resonances for bottles and trace formulae, Math. Nachr., 221, p. 95-149 (2001). | MR | Zbl

[12] Sjöstrand (J.), Vodev (G.).— Asymptotics of the number of Rayleigh resonances, Math. Ann. 309, p. 287-306 (1997). | MR | Zbl

[13] Sjöstrand (J.), Zworski (M.).— Fractal upper bounds on the density of semiclassical resonances, Duke Math J, 137(3), p. 381-459 (2007). | MR

[14] Sjöstrand (J.), Zworski (M.).— Elementary linear algebra for advanced spectral problems, Annales Inst. Fourier, 57(7), p. 2095-2141 (2007). | Numdam | MR | Zbl

[15] Wunsch (J.), Zworski (M.).— The FBI transform on compact C manifolds, Trans. A.M.S., 353(3), p. 1151-1167 (2001). | MR | Zbl

  • Vogel, Martin Pseudospectra and eigenvalue asymptotics for disordered non-selfadjoint operators in the semiclassical limit, Frontiers in Applied Mathematics and Statistics, Volume 10 (2024) | DOI:10.3389/fams.2024.1508973
  • Liu, Boya; Saksala, Teemu; Yan, Lili Partial Data Inverse Problem for Hyperbolic Equation with Time-Dependent Damping Coefficient and Potential, SIAM Journal on Mathematical Analysis, Volume 56 (2024) no. 4, p. 5678 | DOI:10.1137/23m1588676
  • Sjöstrand, Johannes Introduction, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Volume 14 (2019), p. 1 | DOI:10.1007/978-3-030-10819-9_1
  • Sjöstrand, Johannes Resolvent Estimates Near the Boundary of the Range of the Symbol, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Volume 14 (2019), p. 191 | DOI:10.1007/978-3-030-10819-9_10
  • Sjöstrand, Johannes Distribution of Eigenvalues for Semi-classical Elliptic Operators with Small Random Perturbations, Results and Outline, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Volume 14 (2019), p. 313 | DOI:10.1007/978-3-030-10819-9_15
  • Sjöstrand, Johannes Proof I: Upper Bounds, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Volume 14 (2019), p. 329 | DOI:10.1007/978-3-030-10819-9_16
  • Sjöstrand, Johannes Proof II: Lower Bounds, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Volume 14 (2019), p. 363 | DOI:10.1007/978-3-030-10819-9_17
  • Sjöstrand, Johannes Spectral Asymptotics for PT Symmetric Operators, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Volume 14 (2019), p. 427 | DOI:10.1007/978-3-030-10819-9_19
  • Krupchyk, Katya; Uhlmann, Gunther Inverse Problems for Magnetic Schrödinger Operators in Transversally Anisotropic Geometries, Communications in Mathematical Physics, Volume 361 (2018) no. 2, p. 525 | DOI:10.1007/s00220-018-3182-0
  • Vogel, Martin The Precise Shape of the Eigenvalue Intensity for a Class of Non-Self-Adjoint Operators Under Random Perturbations, Annales Henri Poincaré, Volume 18 (2017) no. 2, p. 435 | DOI:10.1007/s00023-016-0528-z
  • Vogel, Martin Two Point Eigenvalue Correlation for a Class of Non-Selfadjoint Operators Under Random Perturbations, Communications in Mathematical Physics, Volume 350 (2017) no. 1, p. 31 | DOI:10.1007/s00220-016-2745-1
  • Vogel, Martin Spectral statistics of non-selfadjoint operators subject to small random perturbations, Séminaire Laurent Schwartz — EDP et applications (2017), p. 1 | DOI:10.5802/slsedp.113
  • Nonnenmacher, Stéphane; Sjöstrand, Johannes; Zworski, Maciej Fractal Weyl law for open quantum chaotic maps, Annals of Mathematics, Volume 179 (2014) no. 1, p. 179 | DOI:10.4007/annals.2014.179.1.3
  • Phan, Quang Sang Spectral monodromy of non-self-adjoint operators, Journal of Mathematical Physics, Volume 55 (2014) no. 1 | DOI:10.1063/1.4855475
  • Sjöstrand, Johannes PT Symmetry and Weyl Asymptotics, The Mathematical Legacy of Leon Ehrenpreis, Volume 16 (2012), p. 299 | DOI:10.1007/978-88-470-1947-8_19
  • Bordeaux Montrieux, William; Sjöstrand, Johannes Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 19 (2011) no. 3-4, p. 567 | DOI:10.5802/afst.1257
  • Sjöstrand, Johannes Eigenvalue distributions and Weyl laws for semiclassical non-self-adjoint operators in 2 dimensions, Geometric Aspects of Analysis and Mechanics, Volume 292 (2011), p. 345 | DOI:10.1007/978-0-8176-8244-6_12
  • Sjöstrand, Johannes Eigenvalue distribution for non-self-adjoint operators on compact manifolds with small multiplicative random perturbations, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 19 (2010) no. 2, p. 277 | DOI:10.5802/afst.1244
  • Sjöstrand, Johannes Counting zeros of holomorphic functions of exponential growth, Journal of Pseudo-Differential Operators and Applications, Volume 1 (2010) no. 1, p. 75 | DOI:10.1007/s11868-010-0006-1

Cité par 19 documents. Sources : Crossref