On montre que l’action standard du groupe modulaire d’une surface de genre assez grand sur le fibré unitaire tangent n’est pas homotopique à une action lisse.
We prove that the standard action of the mapping class group of a surface of sufficiently large genus on the unit tangent bundle is not homotopic to any smooth action.
@article{AFST_2010_6_19_3-4_589_0, author = {Souto, J.}, title = {A remark on the action of the mapping class group on the unit tangent bundle}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {589--601}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 19}, number = {3-4}, year = {2010}, doi = {10.5802/afst.1258}, zbl = {1236.57027}, mrnumber = {2790810}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/afst.1258/} }
TY - JOUR AU - Souto, J. TI - A remark on the action of the mapping class group on the unit tangent bundle JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2010 SP - 589 EP - 601 VL - 19 IS - 3-4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://archive.numdam.org/articles/10.5802/afst.1258/ DO - 10.5802/afst.1258 LA - en ID - AFST_2010_6_19_3-4_589_0 ER -
%0 Journal Article %A Souto, J. %T A remark on the action of the mapping class group on the unit tangent bundle %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2010 %P 589-601 %V 19 %N 3-4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://archive.numdam.org/articles/10.5802/afst.1258/ %R 10.5802/afst.1258 %G en %F AFST_2010_6_19_3-4_589_0
Souto, J. A remark on the action of the mapping class group on the unit tangent bundle. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 19 (2010) no. 3-4, pp. 589-601. doi : 10.5802/afst.1258. http://archive.numdam.org/articles/10.5802/afst.1258/
[1] Bestvina (M.), Church (T.) and Souto (J.).— Some groups of mapping classes not realized by diffeomorphisms, preprint (2009).
[2] Bing (R.).— Inequivalent families of periodic homeomorphisms of , Ann. of Math. (2) 80 (1964). | MR | Zbl
[3] Casson (A.) and Bleiler (S.).— Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, 9. Cambridge University Press, 1988. | MR | Zbl
[4] Deroin (B.), Kleptsyn (V.) and Navas (A.).— Sur la dynamique unidimensionnelle en régularité intermédiaire, Acta Math. 199 (2007), no. 2. | MR | Zbl
[5] Farb (B.) and Margait (D.).— A primer on mapping class groups, to be published by Princeton University Press.
[6] Farb (B.) and Franks (J.).— Groups of homeomorphisms of one-manifolds, I: Nonlinear group actions, preprint (2001).
[7] Franks (J.) and Handel (M.).— Global fixed points for centralizers and Morita’s Theorem, Geom. Topol. 13 (2009). | MR | Zbl
[8] Korkmaz (M.).— Low-dimensional homology groups of mapping class groups: a survey, Turkish J. Math. 26 (2002). | MR | Zbl
[9] Kuusalo (T.).— Boundary mappings of geometric isomorphisms of Fuchsian groups, Ann. Acad. Sci. Fenn. Ser. A I No. 545 (1973). | MR | Zbl
[10] Marković (V.).— Realization of the mapping class group by homeomorphisms, Invent. Math. 168 (2007). | MR | Zbl
[11] Meeks (W.) and Scott (P.).— Finite group actions on -manifolds, Invent. Math. 86 (1986). | MR | Zbl
[12] Milnor (J.) and Stasheff (J.).— Characteristic classes, Annals of Mathematics Studies, No. 76. Princeton University Press, (1974). | MR | Zbl
[13] Morita (S.).— Characteristic classes of surface bundles, Invent. Math. 90 (1987). | MR | Zbl
[14] Neumann (W.) and Raymond (F.).— Seifert manifolds, plumbing, -invariant and orientation reversing maps, in Algebraic and geometric topology, Lecture Notes in Math., 664, Springer 1978. | MR | Zbl
[15] Parwani (K.).— actions on the mapping class groups on the circle, Algebr. Geom. Topol. 8 (2008). | MR | Zbl
[16] Powell (J.).— Two theorems on the mapping class group of a surface, Proc. Amer. Math. Soc. 68 (1978). | MR | Zbl
[17] Seifert (H.).— Topologie dreidimensionalen gefaserter Räume, Acta Math. 60 (1933). | Zbl
[18] Sullivan (D.).— Hyperbolic geometry and homeomorphisms, in Proc. Georgia Topology Conf. 1977, Academic Press, 1979. | MR | Zbl
[19] Thurston (W.).— A generalization of the Reeb stability theorem, Topology 13 (1974) | MR | Zbl
[20] Waldhausen (F.).— On irreducible -manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968). | MR | Zbl
Cité par Sources :