Captures, matings and regluings
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 21 (2012) no. S5, pp. 877-906.

Dans des tranches de l’espace des paramètres de fractions rationnelles de degré 2, nous identifions des arcs représentés par des accouplements de polynômes quadratiques. Ces arcs sont contenus dans le bord des composantes hyperboliques.

In parameter slices of quadratic rational functions, we identify arcs represented by matings of quadratic polynomials. These arcs are on the boundaries of hyperbolic components.

@article{AFST_2012_6_21_S5_877_0,
     author = {Mashanova, Inna and Timorin, Vladlen},
     title = {Captures, matings and regluings},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {877--906},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 21},
     number = {S5},
     year = {2012},
     doi = {10.5802/afst.1356},
     mrnumber = {3088261},
     zbl = {06167095},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/afst.1356/}
}
TY  - JOUR
AU  - Mashanova, Inna
AU  - Timorin, Vladlen
TI  - Captures, matings and regluings
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2012
DA  - 2012///
SP  - 877
EP  - 906
VL  - Ser. 6, 21
IS  - S5
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://archive.numdam.org/articles/10.5802/afst.1356/
UR  - https://www.ams.org/mathscinet-getitem?mr=3088261
UR  - https://zbmath.org/?q=an%3A06167095
UR  - https://doi.org/10.5802/afst.1356
DO  - 10.5802/afst.1356
LA  - en
ID  - AFST_2012_6_21_S5_877_0
ER  - 
Mashanova, Inna; Timorin, Vladlen. Captures, matings and regluings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 21 (2012) no. S5, pp. 877-906. doi : 10.5802/afst.1356. http://archive.numdam.org/articles/10.5802/afst.1356/

[1] Aspenberg (M.), Yampolsky (M.).— “Mating non-renormalizable quadratic polynomials”, Commun. Math. Phys., 287, p. 1-40 (2009). | MR 2480740 | Zbl 1187.37065

[2] Douady (A.) and Hubbard (J.).— “A proof of Thurston’s topological characterization of rational functions”, Acta Math. 171, p. 263-297 (1993). | MR 1251582 | Zbl 0806.30027

[4] McMullen (C.).— “Automorphisms of rational maps”, In “Holomorphic Functions and Moduli I”, p. 31-60, Springer, (1988). | MR 955807 | Zbl 0692.30035

[5] Moore (R.L.).— “On the foundations of plane analysis situs”, Transactions of the AMS, 17, p. 131-164 (1916). | MR 1501033

[6] Moore (R.L.).— “Concerning upper-semicontinuous collections of continua”, Transactions of the AMS, 27, Vol. 4, p. 416-428 (1925). | MR 1501320

[7] Mañe (R.), Sud (P.), Sullivan (D.).— “On the dynamics of rational maps”, Ann. Sci. École Norm. Sup. (4) 16, no. 2, p. 193-217 (1983). | Numdam | MR 732343 | Zbl 0524.58025

[8] Milnor (J.).— “Geometry and Dynamics of Quadratic Rational Maps” Experimental Math. 2 p. 37-83 (1993). | MR 1246482 | Zbl 0922.58062

[9] Milnor (J.).— “Periodic orbits, externals rays and the Mandelbrot set: an expository account”. Géométrie complexe et systèmes dynamiques (Orsay, 1995). Astérisque No. 261, p. 277-333 (2000). | MR 1755445 | Zbl 0941.30016

[10] Milnor (J.).— “Local connectivity of Julia sets: expository lectures”, in “The Mandelbrot set, Theme and Variations,” LMS Lecture Note Series 274, Cambr. U. Press, p. 67-116 (2000). | MR 1765085 | Zbl 1107.37305

[11] Pilgrim (K.).— “Rational maps whose Fatou components are Jordan domains”, Ergodic Theory and Dynamical Systems, 16, p. 1323-1343 (1996). | MR 1424402 | Zbl 0894.30017

[12] Rees (M.).— “Components of degree two hyperbolic rational maps” Invent. Math. 100, p. 357-382 (1990). | MR 1047139 | Zbl 0712.30022

[13] Rees (M.).— “A partial description of the Parameter Space of Rational Maps of Degree Two: Part 1” Acta Math. 168, 11-87 (1992). | MR 1149864 | Zbl 0774.58035

[14] Rees (M.).— “A Fundamental Domain for V 3 ”, Mém. Soc. Math. Fr. (N.S.) No. 121 (2010). | Numdam | MR 2768577 | Zbl 1222.30001

[15] Sullivan (D.).— “ Quasiconformal homeomorphisms and dynamics. I. Solution of the Fatou-Julia problem on wandering domains”. Ann. of Math. (2) 122, No. 3, p. 401-418 (1985). | MR 819553 | Zbl 0589.30022

[16] Tan (L.).— “Matings of quadratic polynomials”, Erg. Th. and Dyn. Sys. 12 p. 589-620 (1992). | MR 1182664 | Zbl 0756.58024

[17] Thurston (W.).— “Geometry and dynamics of rational functions”, in “Complex dynamics: families and friends”, D. Schleicher (Ed.) (2009) | MR 2508255

[18] Timorin (V.).— “Topological regluing of rational functions”, Inventiones Math., 179, Issue 3, p. 461-506 (2009). | MR 2587338 | Zbl 1211.37058

[19] Wittner (B.).— “On the bifurcation loci of rational maps of degree two”, PhD Thesis, Cornell University (1988). | MR 2636558

Cité par Sources :