Matings and the other side of the dictionary
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 21 (2012) no. S5, pp. 1139-1147.

Les accouplements forment une classe essentielle d’applications rationelles, sans doute celle qui est la mieux comprise. Mais elle fait intervenir des objets bizarres : recollements de dendrites, courbes de Peano, etc. La construction analogue pour les groupes Kleiniens est celle des limites doubles. Cette construction est essentielle pour l’hyperbolisation des variétés de dimension trois fibres sur le cercle. Ces deux constructions se correspondent par le dictionnaire de Sullivan. Cet article essaie de montrer les similitudes et les différences.

In the theory of rational maps an important role is played by matings. These are probably the best understood of all rational functions, but they are bizarre, and involve gluing dendrites together to get spheres carrying Peano curves. In the theory of Kleinian groups, there is a parallel construction, the construction of double limits, that is central to Thurston’s hyperbolization theorem for 3-manifolds that fiber over the circle with pseudo-Anosov monodromy. It also involves gluing dendrites and Peano curves. Clearly these two constructions form one entry of the Sullivan dictionary. This article attempts to spell out the similarities and differences.

@article{AFST_2012_6_21_S5_1139_0,
     author = {Hubbard, John},
     title = {Matings and the other side of the dictionary},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {1139--1147},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 21},
     number = {S5},
     year = {2012},
     doi = {10.5802/afst.1364},
     mrnumber = {3088269},
     zbl = {1283.37052},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/afst.1364/}
}
TY  - JOUR
AU  - Hubbard, John
TI  - Matings and the other side of the dictionary
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2012
DA  - 2012///
SP  - 1139
EP  - 1147
VL  - Ser. 6, 21
IS  - S5
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://archive.numdam.org/articles/10.5802/afst.1364/
UR  - https://www.ams.org/mathscinet-getitem?mr=3088269
UR  - https://zbmath.org/?q=an%3A1283.37052
UR  - https://doi.org/10.5802/afst.1364
DO  - 10.5802/afst.1364
LA  - en
ID  - AFST_2012_6_21_S5_1139_0
ER  - 
Hubbard, John. Matings and the other side of the dictionary. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 21 (2012) no. S5, pp. 1139-1147. doi : 10.5802/afst.1364. http://archive.numdam.org/articles/10.5802/afst.1364/

[1] Brock (J.), Canary (R.), Minsky (Y.).— The Classification of Kleinian Surface Groups, II: the Ending Lamination Conjecture, arXiv:math/0412006. | MR 2925381

[2] Hubbard (J. H.).— Teichmüller theory, vol. I, Matrix Editions (2006). | MR 2245223

[3] Hubbard (J. H.).— Teichmüller theory, vol. II, Matrix Editions, to appear. | MR 2245223

[4] McMullen (C.).— Iteration on Teichmüller space, Invent.math. 99, p. 425-454 (1990). | MR 1031909 | Zbl 0695.57012

[5] McMullen (C.).— Rational maps and Kleinian groups, In Proceedings of the International Congress of Mathematicians (Kyoto, 1990), p. 889-900. Springer-Verlag (1991). | MR 1159274 | Zbl 0764.30022

[6] Minsky (Y.).— The Classification of Kleinian Surface Groups, I. Models and Bounds, Ann. Math., 171(1), p. 1-107 (2010). | MR 2630036 | Zbl 1193.30063

[7] Mahan (Mj).— Cannon-Thurston Maps for Kleinian Groups, arXiv:math arxiv:1002.0996. | MR 2667569

[8] Otal (J.-P.).— The hyperbolization theorem for fibered 3-manifolds, Translated from the 1996 French original by Leslie D. Kay. SMF/AMS Texts and Monographs, 7. American Mathematical Society, Providence, RI; Société Mathématique de France, Paris (2001). | MR 1855976 | Zbl 0986.57001

[9] Rees (M.).— A partial description of parameter space of rational maps of degree two: Part I, Acta Math. 168, p. 11-87 (1992). | MR 1149864 | Zbl 0774.58035

[10] Sullivan (D.).— Quasiconformal Homeomorphisms and Dynamics, I. Solution of the Fatou-Julia problem on wandering domains, Annals of math 122, p. 401-418 (1985). | MR 819553 | Zbl 0589.30022

[11] Thurston (W.).— On the geometry and Dynamics of iterated Rational Maps, in Complex Dynamics: Families and Friends, Schleicher ed., AK Peters, p. 3-130 (2009). | MR 2508255 | Zbl 1185.37111

[12] Thurston (W.).— Hyperbolic structures on 3-manifolds, I: Deformation of acylindrical manifolds, Annals of Math 124, p. 203-246 (1986). | MR 855294 | Zbl 0668.57015

[13] Thurston (W.).— Hyperbolic structures on 3-manifolds, II: Surface Groups and 3-Manifolds that fiber over the Circle, arXiv:math/9801045.

[14] Lei (T.).— Matings of quadratic polynomials, Ergod. th. and dyn. syst., vo. 12, p. 589-620 (1992). | MR 1182664 | Zbl 0756.58024

[15] Wada (M.).— Opti, http://delta.math.sci.osaka-u.ac.jp/OPTi

[16] Wada (M.).— Mating Siegel Quadratic Polynomials, JAMS 14, p. 25-78 (2000). | MR 1800348

Cité par Sources :