Soit
Let
@article{AFST_2015_6_24_4_817_0, author = {Delmotte, Thierry and Rau, Cl\'ement}, title = {A note on exit time for anchored isoperimetry}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {817--835}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 24}, number = {4}, year = {2015}, doi = {10.5802/afst.1466}, mrnumber = {3434258}, zbl = {1333.60087}, language = {en}, url = {https://www.numdam.org/articles/10.5802/afst.1466/} }
TY - JOUR AU - Delmotte, Thierry AU - Rau, Clément TI - A note on exit time for anchored isoperimetry JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2015 SP - 817 EP - 835 VL - 24 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - https://www.numdam.org/articles/10.5802/afst.1466/ DO - 10.5802/afst.1466 LA - en ID - AFST_2015_6_24_4_817_0 ER -
%0 Journal Article %A Delmotte, Thierry %A Rau, Clément %T A note on exit time for anchored isoperimetry %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2015 %P 817-835 %V 24 %N 4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U https://www.numdam.org/articles/10.5802/afst.1466/ %R 10.5802/afst.1466 %G en %F AFST_2015_6_24_4_817_0
Delmotte, Thierry; Rau, Clément. A note on exit time for anchored isoperimetry. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Numéro Spécial : Conférence “Talking Across Fields” du 24 au 28 mars 2014 à l’Institut de Mathématiques de Toulouse, Tome 24 (2015) no. 4, pp. 817-835. doi : 10.5802/afst.1466. https://www.numdam.org/articles/10.5802/afst.1466/
[1] Alexander (S.) and Orbach (R.).— Density of states on fractals: “fractons". J. Physique (Paris) Lett., 43, p. 625-631 (1982).
[2] Antal (P.) and Pisztora (A.).— On the chemical distance for supercritical Bernoulli percolation. Ann. Probab., 24(2), p. 1036-1048 (1996). | MR | Zbl
[3] Barlow (M. T.).— Random walks on supercritical percolation clusters. Ann. Probab., 32(4), p. 3024-3084 (2004). | MR | Zbl
[4] Benjamini (I.), Lyons (R.), and Schramm (O.).— Percolation perturbations in potential theory and random walks. In Random walks and discrete potential theory (Cortona, 1997), Sympos. Math., XXXIX, pages 56-84. Cambridge Univ. Press, Cambridge (1999). | MR | Zbl
[5] Berger (N.), Biskup (M.),Hoffman (C.), and Kozma (G.).— Anomalous heat-kernel decay for random walk among bounded random conductances (2007). | Numdam | MR | Zbl
[6] Boukhadra (O.).— Anomalous heat-kernel decay for random walk among polynomial lower tail random conductances (2008).
[7] Chen (D.) and Peres (Y.).— Anchored expansion, percolation and speed. Ann. Probab., 32(4), p. 2978-2995, 2004. With an appendix by Gábor Pete. | MR | Zbl
[8] Coulhon (T.).— Ultracontractivity and Nash type inequalities. J. Funct. Anal., 141(2), p. 510-539 (1996). | MR | Zbl
[9] Coulhon (T.) and Saloff-Coste (L.).— Puissances d’un opérateur régularisant. Ann. Inst. H. Poincaré Probab. Statist., 26(3), p. 419-436 (1990). | Numdam | MR | Zbl
[10] de Gennes (P.-G.).— La percolation : un concept unificateur. La Recherche, 7, p. 919-927 (1976).
[11] Delmotte (T.) and Rau (C.).— Exit time for anchored expansion. http, p. //arxiv.org/abs/0903.3892, (2008).
[12] Gabor (P.).— A note on percolation on
[13] Grigor’yan (A.).— On the existence of positive fundamental solution of the laplace equation on riemannian manifolds. Mat. Sb. (N.S.), 56(2), p. 349-358 (1987). | Zbl
[14] Grigor’yan (A.).— Heat kernel upper bounds on a complete non-compact manifold. Rev. Mat. Iberoamericana, 10(2), p. 395-452 (1994). | Zbl
[15] Grimmett (G.R.).— Percolation (1989). | MR
[16] Hofstad (R.V.D.).— The incipient infinite cluster for high-dimensional unoriented percolation. Journal of Statistical Physics (2011).
[17] Lyons (R.), Morris (B.), and Schramm (O.).— Ends in uniform spanning forests. Electron. J. Probab., 13, p. no. 58, 1702-1725 (2008). | MR | Zbl
[18] Mathieu (P.) and Remy (E.).— Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab., 32(1A), p. 100-128 (2004). | MR | Zbl
[19] Morris (B.) and Peres (Y.).— Evolving sets and mixing. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pages 279-286 (electronic), New York (2003). ACM. | MR | Zbl
[20] Nash (J.).— Continuity of solutions of parabolic and elliptic equations. Amer. J. Math., 80, p. 931-954 (1958). | MR | Zbl
[21] Pittet (C.) and Saloff-Coste (L.).— A survey on the relationships between volume growth, isoperimetry , and the behaviour of simple random walk on cayley graphs, with examples. Preprint (2001).
[22] Rau (C.).— Sur le nombre de points visités par une marche aléatoire sur un amas infini de percolation. Bull. Soc. Math. France, 135(1), p. 135-169 (2007). | Numdam | MR | Zbl
[23] Schramm (O.) and Xu (Z.).— Hyperbolic and parabolic packings. Discrete Comput. Geom., 14(2), p. 123-149 (1995). | MR | Zbl
[24] Sinai (Y.G.).— Theory of phase transition: Rigourous results. Int Series in Natural Phil., 108.
[25] Thomassen (C.).— Isoperimetric inequalities and transient random walks on graphs. Ann. Probab., 20(3), p. 1592-1600 (1992). | MR | Zbl
[26] Varopoulos (N. Th.).— Hardy-Littlewood theory for semigroups. J. Funct. Anal., 63(2), p. 240-260 (1985). | MR | Zbl
[27] Virág (B.).— Anchored expansion and random walk. Geom. Funct. Anal., 10(6), p. 1588-1605 (2000). | MR | Zbl
Cité par Sources :