À condition que est une domaine bornée dans et soit compact sous-ensemble de en maintenant que soit connexe, cet article va examiner les propriétés d’extension de la fonction de Green pluricomplexe de en sous-domaines strictement plus larges de comme une fonction de Green pluricomplexe. Le problème sera examiné quand soit une domaine Reinhardt complète bornée pseduconvexe dans et une étude détaillée sur unité disque sera fournie.
Let be a bounded domain in and be a compact subset of such that is connected. This paper deals with the study of the extension properties of the pluricomplex Green function of to strictly larger subdomains of as a pluricomplex Green function. The problem will be studied when is a pseudoconvex, bounded complete Reinhardt domain in and a detailed study in unit bidisc will be provided.
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/afst.1601
Classification : 32U35
Mots clés : pluricomplex Green functions, convex functions, Reinhardt domains
@article{AFST_2019_6_28_2_329_0, author = {Kur\c{s}ung\"oz, S. Zeynep \"Ozal}, title = {On {Extension} {Properties} of {Pluricomplex} {Green} {Functions}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {329--356}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 28}, number = {2}, year = {2019}, doi = {10.5802/afst.1601}, mrnumber = {3957683}, zbl = {07095684}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/afst.1601/} }
TY - JOUR AU - Kurşungöz, S. Zeynep Özal TI - On Extension Properties of Pluricomplex Green Functions JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2019 DA - 2019/// SP - 329 EP - 356 VL - Ser. 6, 28 IS - 2 PB - Université Paul Sabatier, Toulouse UR - http://archive.numdam.org/articles/10.5802/afst.1601/ UR - https://www.ams.org/mathscinet-getitem?mr=3957683 UR - https://zbmath.org/?q=an%3A07095684 UR - https://doi.org/10.5802/afst.1601 DO - 10.5802/afst.1601 LA - en ID - AFST_2019_6_28_2_329_0 ER -
Kurşungöz, S. Zeynep Özal. On Extension Properties of Pluricomplex Green Functions. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 28 (2019) no. 2, pp. 329-356. doi : 10.5802/afst.1601. http://archive.numdam.org/articles/10.5802/afst.1601/
[1] Domains of existence for plurisubharmonic functions, Math. Ann., Volume 238 (1978) no. 1, pp. 67-69 | MR 510308 | Zbl 0403.32011
[2] On the domains of existence for plurisubharmonic functions, Complex analysis (Warsaw, 1979) (Banach Center Publications), Volume 11, PWN - Polish Scientific Publishers, 1983, pp. 33-37 | MR 737748 | Zbl 0539.32012
[3] Plurisubharmonic functions outside compact sets, Proc. Am. Math. Soc., Volume 103 (1988) no. 1, pp. 81-84 | MR 938648 | Zbl 0654.32009
[4] Extending analytic objects, Commun. Pure Appl. Math., Volume 28 (1975) no. 6, pp. 701-727 | MR 409890 | Zbl 0323.32013
[5] First steps in several complex variables: Reinhardt domains, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008 | Zbl 1148.32001
[6] Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. Fr., Volume 113 (1985) no. 2, pp. 231-240 | MR 820321 | Zbl 0584.32037
[7] Invariant pluricomplex Green functions, Topics in complex analysis (Warsaw, 1992) (Banach Center Publications), Volume 31, PWN - Polish Scientific Publishers, 1995, pp. 207-226 | MR 1341390 | Zbl 0844.31004
[8] Extension of plurisubharmonic functions from a submanifold (Russian), Dokl. Akad. Nauk UzSSR (1982), pp. 3-4 | MR 668967 | Zbl 0637.32014
[9] Extension of convex function, J. Convex Anal., Volume 21 (2014) no. 4, pp. 965-987 | MR 3331205 | Zbl 1312.26027
[10] Spaces of analytic functions and maximal plurisubharmonic functions (Russian), D. Sc. Dissertation, Rostov-on-Don, 1984
Cité par Sources :