Nous calculons les valuers moyennes des fonctions
We calculate mean values of
Accepté le :
Publié le :
@article{AFST_2021_6_30_3_633_0, author = {Van Order, Jeanine}, title = {Dirichlet twists of $\protect \mathrm{GL}_n$-automorphic $L$-functions and {hyper-Kloosterman} {Dirichlet} series}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {633--703}, publisher = {Universit\'e Paul Sabatier, Toulouse}, volume = {Ser. 6, 30}, number = {3}, year = {2021}, doi = {10.5802/afst.1687}, language = {en}, url = {https://www.numdam.org/articles/10.5802/afst.1687/} }
TY - JOUR AU - Van Order, Jeanine TI - Dirichlet twists of $\protect \mathrm{GL}_n$-automorphic $L$-functions and hyper-Kloosterman Dirichlet series JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2021 SP - 633 EP - 703 VL - 30 IS - 3 PB - Université Paul Sabatier, Toulouse UR - https://www.numdam.org/articles/10.5802/afst.1687/ DO - 10.5802/afst.1687 LA - en ID - AFST_2021_6_30_3_633_0 ER -
%0 Journal Article %A Van Order, Jeanine %T Dirichlet twists of $\protect \mathrm{GL}_n$-automorphic $L$-functions and hyper-Kloosterman Dirichlet series %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2021 %P 633-703 %V 30 %N 3 %I Université Paul Sabatier, Toulouse %U https://www.numdam.org/articles/10.5802/afst.1687/ %R 10.5802/afst.1687 %G en %F AFST_2021_6_30_3_633_0
Van Order, Jeanine. Dirichlet twists of $\protect \mathrm{GL}_n$-automorphic $L$-functions and hyper-Kloosterman Dirichlet series. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 30 (2021) no. 3, pp. 633-703. doi : 10.5802/afst.1687. https://www.numdam.org/articles/10.5802/afst.1687/
[1] Estimations élémentaires des sommes de Kloosterman multiples, Le spectre des surfaces hyperboliques (Savoirs actuels), CNRS Éditions, 2011 (Appendix)
[2] Voronoi formulas on
[3] The Voronoi formula for
[4] On the Voronoi formula for
[5] Analytic Number Theory, Colloquium Publications, 53, American Mathematical Society, 2004 | MR | Zbl
[6] Refined estimates towards the Ramanujan and Selberg Conjectures, J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 139-183 Appendix to H. Kim, “Functoriality for the exterior square of
[7] The Voronoi Formula and double Dirichlet series, Algebra Number Theory, Volume 10 (2016) no. 10, pp. 2267-2286 | DOI | MR | Zbl
[8] Approximate functional equations of Dirichlet functions, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 32 (1966), pp. 134-185 | MR
[9] Upper Bounds on
[10] On Selberg’s Eigenvalue Conjecture, Geom. Funct. Anal., Volume 5 (1995) no. 2, pp. 387-401 | MR
[11] A general Voronoi summation formula for
[12] The balanced Voronoi formulas for
[13] Upper and lower bounds at
[14]
[15] On the estimation of Fourier coefficients of modular forms, Theory of numbers (California Institute of Technology, Pasadena, USA, 1963) (Proceedings of Symposia in Pure Mathematics), Volume 8, American Mathematical Society, 1965, pp. 1-15 | Zbl
[16] Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. Sci. Éc. Norm. Supér., Volume 21 (1904), pp. 207-267 | DOI | Numdam | MR | Zbl
Cité par Sources :