Asymptotic expansions for the conductivity problem with nearly touching inclusions with corner
Annales Henri Lebesgue, Volume 3 (2020), pp. 381-406.

We investigate the case of a medium with two inclusions or inhomogeneities with nearly touching corner singularities. We present two different asymptotic models to describe the phenomenon under specific geometrical assumptions. These asymptotic expansions are analysed and compared in a common framework. We conclude by a representation formula to characterise the detachment of the corners and we provide the possible extensions of the geometrical hypotheses.

Nous considérons le problème de Laplace pour un matériau contenant deux inclusions ou inhomogénéités avec coins proches. Nous présentons deux approches asymptotiques différentes pour décrire le phénomène sous certaines conditions géométriques. Ces développements asymptotiques sont étudiés et comparés dans un même cadre. Nous aboutissons à une formule de représentation qui caractérise l’éloignement des deux coins et proposons une relaxation des hypothèses géométriques.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/ahl.36
Classification: 35B25, 35C20
Keywords: Asymptotic expansion, corner singularity
Bonnaillie-Noël, Virginie 1; Poignard, Clair 2; Vial, Grégory 3

1 Département de mathématiques et applications, École normale supérieure, CNRS, PSL University, 45 rue d’Ulm, 75005 Paris (France)
2 Institut de Mathématiques de Bordeaux, INRIA, CNRS, Université de Bordeaux, 351, cours de la Libération, 33405 Talence (France)
3 Univ Lyon, École Centrale de Lyon, CNRS, Institut Camille Jordan, 69134 Ecully (France)
@article{AHL_2020__3__381_0,
     author = {Bonnaillie-No\"el, Virginie and Poignard, Clair and Vial, Gr\'egory},
     title = {Asymptotic expansions for the conductivity problem with nearly touching inclusions with corner},
     journal = {Annales Henri Lebesgue},
     pages = {381--406},
     publisher = {\'ENS Rennes},
     volume = {3},
     year = {2020},
     doi = {10.5802/ahl.36},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/ahl.36/}
}
TY  - JOUR
AU  - Bonnaillie-Noël, Virginie
AU  - Poignard, Clair
AU  - Vial, Grégory
TI  - Asymptotic expansions for the conductivity problem with nearly touching inclusions with corner
JO  - Annales Henri Lebesgue
PY  - 2020
SP  - 381
EP  - 406
VL  - 3
PB  - ÉNS Rennes
UR  - http://archive.numdam.org/articles/10.5802/ahl.36/
DO  - 10.5802/ahl.36
LA  - en
ID  - AHL_2020__3__381_0
ER  - 
%0 Journal Article
%A Bonnaillie-Noël, Virginie
%A Poignard, Clair
%A Vial, Grégory
%T Asymptotic expansions for the conductivity problem with nearly touching inclusions with corner
%J Annales Henri Lebesgue
%D 2020
%P 381-406
%V 3
%I ÉNS Rennes
%U http://archive.numdam.org/articles/10.5802/ahl.36/
%R 10.5802/ahl.36
%G en
%F AHL_2020__3__381_0
Bonnaillie-Noël, Virginie; Poignard, Clair; Vial, Grégory. Asymptotic expansions for the conductivity problem with nearly touching inclusions with corner. Annales Henri Lebesgue, Volume 3 (2020), pp. 381-406. doi : 10.5802/ahl.36. http://archive.numdam.org/articles/10.5802/ahl.36/

[AGG97] Amrouche, Chérif; Girault, Vivette; Giroire, Jean Dirichlet and Neumann exterior problems for the n–dimensional Laplace operator: an approach in weighted Sobolev spaces, J. Math. Pures Appl., Volume 76 (1997) no. 1, pp. 55-81 | DOI | MR

[AKT06] Ammari, Habib; Kang, Hyeonbae; Touibi, Karim An asymptotic formula for the voltage potential in the case of a near-surface conductivity inclusion, Z. Angew. Math. Phys., Volume 57 (2006) no. 2, pp. 234-243 | DOI | MR | Zbl

[BLY09] Bao, Ellen Shiting; Li, Yan Yan; Yin, Biao Gradient estimates for the perfect conductivity problem, Arch. Ration. Mech. Anal., Volume 193 (2009) no. 1, pp. 195-226 | DOI | MR | Zbl

[BT13] Bonnetier, Eric; Triki, Faouzi On the spectrum of the Poincaré variational problem for two close-to-touching inclusions in 2D, Arch. Ration. Mech. Anal., Volume 209 (2013) no. 2, pp. 541-567 | DOI | MR | Zbl

[BTT18] Bonnetier, Eric; Triki, Faouzi; Tsou, Chun-Hsiang Eigenvalues of the Neumann–Poincaré operator for two inclusions with contact of order m: a numerical study, SMAI J. Comput. Math., Volume 36 (2018) no. 1, pp. 17-28 | DOI | MR | Zbl

[CCDV06] Caloz, Gabriel; Costabel, Martin; Dauge, Monique; Vial, Grégory Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer, Asymptotic Anal., Volume 50 (2006) no. 1-2, pp. 121-173 | MR | Zbl

[Dau88] Dauge, Monique Elliptic boundary value problems on corner domains. Smoothness and asymptotics of solutions, Lecture Notes in Mathematics, 1341, Springer, 1988, viii+259 pages | MR | Zbl

[Dau96] Dauge, Monique Strongly elliptic problems near cuspidal points and edges, Partial differential equations and functional analysis. In memory of Pierre Grisvard. Proceedings of a conference held in November 1994 (Cea, Jean; al., eds.) (Progress in Nonlinear Differential Equations and their Applications), Volume 22, Birkhäuser (1996), pp. 93-110 | MR | Zbl

[Gri85] Grisvard, Pierre Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24, Pitman Advanced Publishing Program, 1985, xiv+410 pages | MR | Zbl

[KLY13] Kang, Hyeonbae; Lim, Mikyoung; Yun, KiHyun Asymptotics and computation of the solution to the conductivity equation in the presence of adjacent inclusions with extreme conductivities, J. Math. Pures Appl., Volume 99 (2013) no. 2, pp. 234-249 | DOI | MR | Zbl

[Kon67] Kondrat’ev, Vladimir Alexandrovich Boundary value problems for elliptic equations in domains with conical or angular points, Tr. Mosk. Mat. O.-va, Volume 16 (1967), pp. 209-292 | MR

[MN86] Movchan, Alexander B.; Nazarov, Sergey A. Asymptotic behavior of the stress-strained state near sharp inclusions, Dokl. Akad. Nauk SSSR, Volume 290 (1986) no. 1, pp. 48-51 | MR

[MNP00] Mazʼya, Vladimir; Nazarov, Sergey A.; Plamenevskij, Boris A. Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Operator Theory: Advances and Applications, 111-112, Birkhäuser, 2000 translated from the German by Boris Plamenevski (Vol. I), Georg Heinig and Christian Posthoff, (Vol. II)

[NP18] Nazarov, Sergey A.; Pérez, María-Eugenia On multi-scale asymptotic structure of eigenfunctions in a boundary value problem with concentrated masses near the boundary, Rev. Mat. Complut., Volume 31 (2018) no. 1, pp. 1-62 | DOI | MR | Zbl

[NT18] Nazarov, Sergey A.; Taskinen, Jari Singularities at the contact point of two kissing Neumann balls, J. Differ. Equations, Volume 264 (2018) no. 3, pp. 1521-1549 | DOI | MR | Zbl

[Néd01] Nédélec, Jean-Claude Acoustic and electromagnetic equations. Integral representations for harmonic problems, Applied Mathematical Sciences, 144, Springer, 2001, ix+316 pages | Zbl

Cited by Sources: