Nous examinons comment la mesure et le nombre de sommets de l’enveloppe convexe d’un échantillon aléatoire de
We examine how the measure and the number of vertices of the convex hull of a random sample of
Accepté le :
Publié le :
Mots-clés : Random polytope, floating body,
@article{AHL_2020__3__701_0, author = {B\'ar\'any, Imre and Fradelizi, Matthieu and Goaoc, Xavier and Hubard, Alfredo and Rote, G\"unter}, title = {Random polytopes and the wet part for arbitrary probability distributions}, journal = {Annales Henri Lebesgue}, pages = {701--715}, publisher = {\'ENS Rennes}, volume = {3}, year = {2020}, doi = {10.5802/ahl.44}, language = {en}, url = {https://www.numdam.org/articles/10.5802/ahl.44/} }
TY - JOUR AU - Bárány, Imre AU - Fradelizi, Matthieu AU - Goaoc, Xavier AU - Hubard, Alfredo AU - Rote, Günter TI - Random polytopes and the wet part for arbitrary probability distributions JO - Annales Henri Lebesgue PY - 2020 SP - 701 EP - 715 VL - 3 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.44/ DO - 10.5802/ahl.44 LA - en ID - AHL_2020__3__701_0 ER -
%0 Journal Article %A Bárány, Imre %A Fradelizi, Matthieu %A Goaoc, Xavier %A Hubard, Alfredo %A Rote, Günter %T Random polytopes and the wet part for arbitrary probability distributions %J Annales Henri Lebesgue %D 2020 %P 701-715 %V 3 %I ÉNS Rennes %U https://www.numdam.org/articles/10.5802/ahl.44/ %R 10.5802/ahl.44 %G en %F AHL_2020__3__701_0
Bárány, Imre; Fradelizi, Matthieu; Goaoc, Xavier; Hubard, Alfredo; Rote, Günter. Random polytopes and the wet part for arbitrary probability distributions. Annales Henri Lebesgue, Tome 3 (2020), pp. 701-715. doi : 10.5802/ahl.44. https://www.numdam.org/articles/10.5802/ahl.44/
[BD97] Few points to generate a random polytope, Mathematika, Volume 44 (1997) no. 2, pp. 325-331 | DOI | MR | Zbl
[Bee15] Random polytopes, Ph. D. Thesis, University of Osnabrück (Germany) (2015) (https://repositorium.ub.uni-osnabrueck.de/bitstream/urn:nbn:de:gbv:700-2015062313276/1/thesis_beermann.pdf)
[BL88] Convex bodies, economic cap coverings, random polytopes, Mathematika, Volume 35 (1988) no. 2, pp. 274-291 | DOI | MR | Zbl
[BR17] Monotonicity of functionals of random polytopes (2017) (https://arxiv.org/abs/1706.08342)
[Bár89] Intrinsic volumes and
[DGG + 13] The monotonicity of
[Efr65] The convex hull of a random set of points, Biometrika, Volume 52 (1965), pp. 331-343 | DOI | MR
[Har67] The number of partitions of a set of
[HW87]
[KPW92] Almost tight bounds for
[KTZ19] Beta polytopes and Poisson polyhedra:
[Mat02] Lectures on Discrete Geometry, Graduate Texts in Mathematics, 212, Springer, 2002 | MR | Zbl
[PA95] Combinatorial Geometry, John Wiley & Sons, 1995 | Zbl
[VC71] On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl., Volume 16 (1971), pp. 264-280 | DOI | Zbl
[Vu05] Sharp concentration of random polytopes, Geom. Funct. Anal., Volume 15 (2005) no. 6, pp. 1284-1318 | MR | Zbl
Cité par Sources :