Nous initions la théorie sur les inégalités de gain d’intégrabilité
We initiate the theory of
Révisé le :
Accepté le :
Publié le :
Mots-clés :
@article{AHL_2020__3__959_0, author = {Hughes, Kevin}, title = {$\ell ^p$-improving for discrete spherical averages}, journal = {Annales Henri Lebesgue}, pages = {959--980}, publisher = {\'ENS Rennes}, volume = {3}, year = {2020}, doi = {10.5802/ahl.50}, language = {en}, url = {https://www.numdam.org/articles/10.5802/ahl.50/} }
Hughes, Kevin. $\ell ^p$-improving for discrete spherical averages. Annales Henri Lebesgue, Tome 3 (2020), pp. 959-980. doi : 10.5802/ahl.50. https://www.numdam.org/articles/10.5802/ahl.50/
[ACHK18] Improved
[BDG16] Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three, Ann. Math., Volume 184 (2016) no. 2, pp. 633-682 | DOI | MR | Zbl
[Bir62] Forms in many variables, Proc. R. Soc. Lond. Ser. A, Volume 265 (1961/62), pp. 245-263
[BNW88] Convex hypersurfaces and Fourier transforms, Ann. Math., Volume 127 (1988) no. 2, pp. 333-365 | DOI | MR | Zbl
[Bou85] Estimations de certaines fonctions maximales, C. R. Acad. Sci. Paris Sér. I Math., Volume 301 (1985) no. 10, pp. 499-502 | MR
[Bou17] On the Vinogradov mean value, Proc. Steklov Inst. Math., Volume 296 (2017), pp. 30-40 | DOI | Zbl
[BR15] Rational points on linear slices of diagonal hypersurfaces, Nagoya Math. J., Volume 218 (2015), pp. 51-100 | DOI | MR | Zbl
[Gra08] Classical Fourier Analysis, Graduate Texts in Mathematics, 249, Springer, 2008 | MR | Zbl
[HL14] Discrete Fourier restriction associated with Schrödinger equations, Rev. Mat. Iberoam., Volume 30 (2014) no. 4, pp. 1281-1300 | DOI | Zbl
[Hug12] Problems and results related to waring’s problem: Maximal functions and ergodic averages, Ph. D. Thesis, Princeton University, USA (2012)
[Hug17] Restricted weak-type endpoint estimates for k-spherical maximal functions, Math. Z., Volume 286 (2017) no. 3-4, pp. 1303-1321 | DOI | MR | Zbl
[Hug19] The discrete spherical averages over a family of sparse sequences, J. Anal. Math., Volume 138 (2019) no. 1, pp. 1-21 | DOI | MR | Zbl
[Ion04] An endpoint estimate for the discrete spherical maximal function, Proc. Am. Math. Soc., Volume 132 (2004) no. 5, pp. 1411-1417 | DOI | MR | Zbl
[KL18]
[Lee03] Endpoint estimates for the circular maximal function, Proc. Am. Math. Soc., Volume 131 (2003) no. 5, pp. 1433-1442 | MR | Zbl
[Lit73]
[Mag02] Diophantine equations and ergodic theorems, Am. J. Math., Volume 124 (2002) no. 5, pp. 921-953 | DOI | MR | Zbl
[Mag07] On the distribution of lattice points on spheres and level surfaces of polynomials, J. Number Theory, Volume 122 (2007) no. 1, pp. 69-83 | DOI | MR | Zbl
[MSW02] Discrete analogues in harmonic analysis: spherical averages, Ann. Math., Volume 155 (2002) no. 1, pp. 189-208 | DOI | MR | Zbl
[RdF86] Maximal functions and Fourier transforms, Duke Math. J., Volume 53 (1986) no. 2, pp. 395-404 | DOI | MR | Zbl
[Woo12] The asymptotic formula in Waring’s problem, Int. Math. Res. Not., Volume 2012 (2012) no. 7, pp. 1485-1504 | DOI | MR | Zbl
Cité par Sources :