Une formule de quadrature pour une mesure
A quadrature rule of a measure
Révisé le :
Accepté le :
Publié le :
Mots-clés : quadrature, Gaussian quadrature, plane curves
@article{AHL_2020__3__1327_0, author = {Blekherman, Grigoriy and Kummer, Mario and Riener, Cordian and Schweighofer, Markus and Vinzant, Cynthia}, title = {Generalized eigenvalue methods for {Gaussian} quadrature rules}, journal = {Annales Henri Lebesgue}, pages = {1327--1341}, publisher = {\'ENS Rennes}, volume = {3}, year = {2020}, doi = {10.5802/ahl.62}, language = {en}, url = {https://www.numdam.org/articles/10.5802/ahl.62/} }
TY - JOUR AU - Blekherman, Grigoriy AU - Kummer, Mario AU - Riener, Cordian AU - Schweighofer, Markus AU - Vinzant, Cynthia TI - Generalized eigenvalue methods for Gaussian quadrature rules JO - Annales Henri Lebesgue PY - 2020 SP - 1327 EP - 1341 VL - 3 PB - ÉNS Rennes UR - https://www.numdam.org/articles/10.5802/ahl.62/ DO - 10.5802/ahl.62 LA - en ID - AHL_2020__3__1327_0 ER -
%0 Journal Article %A Blekherman, Grigoriy %A Kummer, Mario %A Riener, Cordian %A Schweighofer, Markus %A Vinzant, Cynthia %T Generalized eigenvalue methods for Gaussian quadrature rules %J Annales Henri Lebesgue %D 2020 %P 1327-1341 %V 3 %I ÉNS Rennes %U https://www.numdam.org/articles/10.5802/ahl.62/ %R 10.5802/ahl.62 %G en %F AHL_2020__3__1327_0
Blekherman, Grigoriy; Kummer, Mario; Riener, Cordian; Schweighofer, Markus; Vinzant, Cynthia. Generalized eigenvalue methods for Gaussian quadrature rules. Annales Henri Lebesgue, Tome 3 (2020), pp. 1327-1341. doi : 10.5802/ahl.62. https://www.numdam.org/articles/10.5802/ahl.62/
[AK62] Some questions in the theory of moments, Translations of Mathematical Monographs, 2, American Mathematical Society, 1962 (translated from russian by W. Fleming and D. Prill) | MR
[BDD + 00] Templates for the solution of algebraic eigenvalue problems: a practical guide, Software – Environments – Tools, 11, Society for Industrial and Applied Mathematics, 2000 | Zbl
[CF91] Recursiveness, positivity, and truncated moment problems, Houston J. Math., Volume 17 (1991) no. 4, pp. 603-635 | MR | Zbl
[GMV00] A stable numerical method for inverting shape from moments, SIAM J. Sci. Comput., Volume 21 (2000) no. 4, pp. 1222-1243 | DOI | MR | Zbl
[HV07] Linear matrix inequality representation of sets, Commun. Pure Appl. Math., Volume 60 (2007) no. 5, pp. 654-674 | DOI | MR | Zbl
[Lau09] Sums of squares, moment matrices and optimization over polynomials, Emerging applications of algebraic geometry (Putinar, Mihai; Sullivant, Seth, eds.) (The IMA Volumes in Mathematics and its Applications), Volume 149, Springer, 2009, pp. 157-270 | MR
[Lau10] Sums of squares, moment matrices and optimization over polynomials (2010) (http://homepages.cwi.nl/~monique/files/moment-ima-update-new.pdf) | Zbl
[Sch17] The moment problem, Graduate Texts in Mathematics, 277, Springer, 2017 | Zbl
[Sze75] Orthogonal polynomials, Colloquium Publications, 23, American Mathematical Society, 1975 | Zbl
[Tyr94] How bad are Hankel matrices?, Numer. Math., Volume 67 (1994) no. 2, pp. 261-269 | DOI | MR | Zbl
[Wag11] Multivariate stable polynomials: theory and applications, Bull. Am. Math. Soc. (N.S.), Volume 48 (2011) no. 1, pp. 53-84 | DOI | MR | Zbl
Cité par Sources :