A quadrature rule of a measure on the real line represents a conic combination of finitely many evaluations at points, called nodes, that agrees with integration against for all polynomials up to some fixed degree. In this paper, we present a bivariate polynomial whose roots parametrize the nodes of minimal quadrature rules for measures on the real line. We give two symmetric determinantal formulas for this polynomial, which translate the problem of finding the nodes to solving a generalized eigenvalue problem.
Une formule de quadrature pour une mesure sur la droite réelle est une combinaison conique d’un nombre fini d’évaluations en des points, appelés nœuds, qui concorde avec l’intégration selon pour tout polynôme jusqu’à un certain degré fixé. Dans cet article, nous introduisons un polynôme bivarié dont les racines paramètrent les nœuds des formules de quadrature minimales pour une mesure donnée. Nous donnons deux représentations déterminantales symétriques pour ce polynôme, ce qui ramène le problème de recherche des nœuds à la résolution d’un problème aux valeurs propres généralisé.
Revised:
Accepted:
Published online:
Keywords: quadrature, Gaussian quadrature, plane curves
@article{AHL_2020__3__1327_0, author = {Blekherman, Grigoriy and Kummer, Mario and Riener, Cordian and Schweighofer, Markus and Vinzant, Cynthia}, title = {Generalized eigenvalue methods for {Gaussian} quadrature rules}, journal = {Annales Henri Lebesgue}, pages = {1327--1341}, publisher = {\'ENS Rennes}, volume = {3}, year = {2020}, doi = {10.5802/ahl.62}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/ahl.62/} }
TY - JOUR AU - Blekherman, Grigoriy AU - Kummer, Mario AU - Riener, Cordian AU - Schweighofer, Markus AU - Vinzant, Cynthia TI - Generalized eigenvalue methods for Gaussian quadrature rules JO - Annales Henri Lebesgue PY - 2020 SP - 1327 EP - 1341 VL - 3 PB - ÉNS Rennes UR - http://archive.numdam.org/articles/10.5802/ahl.62/ DO - 10.5802/ahl.62 LA - en ID - AHL_2020__3__1327_0 ER -
%0 Journal Article %A Blekherman, Grigoriy %A Kummer, Mario %A Riener, Cordian %A Schweighofer, Markus %A Vinzant, Cynthia %T Generalized eigenvalue methods for Gaussian quadrature rules %J Annales Henri Lebesgue %D 2020 %P 1327-1341 %V 3 %I ÉNS Rennes %U http://archive.numdam.org/articles/10.5802/ahl.62/ %R 10.5802/ahl.62 %G en %F AHL_2020__3__1327_0
Blekherman, Grigoriy; Kummer, Mario; Riener, Cordian; Schweighofer, Markus; Vinzant, Cynthia. Generalized eigenvalue methods for Gaussian quadrature rules. Annales Henri Lebesgue, Volume 3 (2020), pp. 1327-1341. doi : 10.5802/ahl.62. http://archive.numdam.org/articles/10.5802/ahl.62/
[AK62] Some questions in the theory of moments, Translations of Mathematical Monographs, 2, American Mathematical Society, 1962 (translated from russian by W. Fleming and D. Prill) | MR
[BDD + 00] Templates for the solution of algebraic eigenvalue problems: a practical guide, Software – Environments – Tools, 11, Society for Industrial and Applied Mathematics, 2000 | Zbl
[CF91] Recursiveness, positivity, and truncated moment problems, Houston J. Math., Volume 17 (1991) no. 4, pp. 603-635 | MR | Zbl
[GMV00] A stable numerical method for inverting shape from moments, SIAM J. Sci. Comput., Volume 21 (2000) no. 4, pp. 1222-1243 | DOI | MR | Zbl
[HV07] Linear matrix inequality representation of sets, Commun. Pure Appl. Math., Volume 60 (2007) no. 5, pp. 654-674 | DOI | MR | Zbl
[Lau09] Sums of squares, moment matrices and optimization over polynomials, Emerging applications of algebraic geometry (Putinar, Mihai; Sullivant, Seth, eds.) (The IMA Volumes in Mathematics and its Applications), Volume 149, Springer, 2009, pp. 157-270 | MR
[Lau10] Sums of squares, moment matrices and optimization over polynomials (2010) (http://homepages.cwi.nl/~monique/files/moment-ima-update-new.pdf) | Zbl
[Sch17] The moment problem, Graduate Texts in Mathematics, 277, Springer, 2017 | Zbl
[Sze75] Orthogonal polynomials, Colloquium Publications, 23, American Mathematical Society, 1975 | Zbl
[Tyr94] How bad are Hankel matrices?, Numer. Math., Volume 67 (1994) no. 2, pp. 261-269 | DOI | MR | Zbl
[Wag11] Multivariate stable polynomials: theory and applications, Bull. Am. Math. Soc. (N.S.), Volume 48 (2011) no. 1, pp. 53-84 | DOI | MR | Zbl
Cited by Sources: