We give a necessary and sufficient condition for an analytic function in to have real part in class . This condition contains the classical one of Zygmund; other variants are also given.
Nous donnons une condition nécessaire et suffisante pour qu’une fonction analytique dans ait une partie réelle dans la classe . Cette condition généralise la condition classique de Zygmund ; on donne aussi d’autres conditions suffisantes.
@article{AIF_1985__35_4_127_0, author = {Essen, M. and Shea, D. F. and Stanton, C. S.}, title = {A value-distribution criterion for the class $L~{\rm log} L$ and some related questions}, journal = {Annales de l'Institut Fourier}, pages = {127--150}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {35}, number = {4}, year = {1985}, doi = {10.5802/aif.1030}, mrnumber = {87e:30041}, zbl = {0563.30025}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1030/} }
TY - JOUR AU - Essen, M. AU - Shea, D. F. AU - Stanton, C. S. TI - A value-distribution criterion for the class $L~{\rm log} L$ and some related questions JO - Annales de l'Institut Fourier PY - 1985 SP - 127 EP - 150 VL - 35 IS - 4 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1030/ DO - 10.5802/aif.1030 LA - en ID - AIF_1985__35_4_127_0 ER -
%0 Journal Article %A Essen, M. %A Shea, D. F. %A Stanton, C. S. %T A value-distribution criterion for the class $L~{\rm log} L$ and some related questions %J Annales de l'Institut Fourier %D 1985 %P 127-150 %V 35 %N 4 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.1030/ %R 10.5802/aif.1030 %G en %F AIF_1985__35_4_127_0
Essen, M.; Shea, D. F.; Stanton, C. S. A value-distribution criterion for the class $L~{\rm log} L$ and some related questions. Annales de l'Institut Fourier, Volume 35 (1985) no. 4, pp. 127-150. doi : 10.5802/aif.1030. http://archive.numdam.org/articles/10.5802/aif.1030/
[1] Integral means, univalent functions and circular symmetrization, Acta Math., 133 (1974), 133-169. | MR | Zbl
,[2] Some sharp inequalities for conjugate functions, Indiana Univ. Math. J., 27 (1978), 833-852. | MR | Zbl
,[3] Positive harmonic functions vanishing on the boundary of certain domains in Rn, Ark. f. Mat., 18 (1980), 53-72. | MR | Zbl
,[4] Exit times of Brownian motion, harmonic majorization, and Hardy spaces, Advances in Math., 26 (1977), 182-205. | MR | Zbl
,[5] Brownian Motion and the Hardy Spaces Hp, in Aspects of Contemporary Complex Analysis, editors Brannan and Clunie, Academic Press 1980, 97-118. | MR | Zbl
,[6] Theory of Hp-spaces, Academic Press, 1970. | MR | Zbl
,[7] On some questions of uniqueness in the theory of symmetrization, Ann. Acad. Sci. Fennicae, Series A. I. Math., 4 (1978/1979), 311-340. | MR | Zbl
and ,[8] Some recent results on conjugate functions in the unit disk. Proc. of the 18th Scand. Congress of Mathematicians, 1980, Progress in Mathematics, Vol. 11, Birkhäuser. | Zbl
and ,[8a] Harmonic Majorization and classical analysis, J. London Math. Soc. (to appear). | Zbl
and , and ,[9] Estimates of harmonic measure, Ark. f. Mat., 6 (1965), 1-31. | MR | Zbl
,[10] Harmonic Majorization, Report No. 5 (1982), Department of Mathematics, University of Umeå, Sweden.
,[11] Meromorphic Functions, Oxford University Press, 1964. | MR | Zbl
,[12] Subharmonic Functions, vol. 1, Academic Press, 1976. | MR | Zbl
and ,[13] On analytic functions of bounded mean oscillation, Bull. London Math. Soc., 10 (1978), 219-224. | MR | Zbl
and ,[14] On the coefficients of functions omitting values, Math. Proc. Cambridge Philos. Soc., 77 (1975), 119-137. | MR | Zbl
and ,[15] A majorant principle in the theory of functions, Math. Scand., 1 (1953), 5-17. | MR | Zbl
,[16] Analytic functions, Springer-Verlag, 1970. | Zbl
,[17] Brownian motion, Hardy spaces and Bounded Mean Oscillation, London Math. Soc. Lecture Note Series, 28 (1977). | MR | Zbl
,[18] Introduction to the theory of entire functions of several complex variables, Transl. Math. Monographs, Vol. 44, Amer. Math. Soc., Providence, R. I. 1974. | MR | Zbl
,[19] Riesz mass and growth problems for subharmonic functions, Thesis, University of Wisconsin 1982.
,[20] About entire and meromorphic functions of exponential type, Proc. of Symp. in Pure Math., Vol. XI, Amer. Math. Soc., Providence, R.I. 1968, 392-430. | MR | Zbl
,[21] Potential theory in modern function theory, Maruzen, Tokyo 1959. | MR | Zbl
,[22] Sur les fonctions conjuguées, Fund. Math., 13 (1929), 284-303. | JFM
,Cited by Sources: