Smoothability of proper foliations
Annales de l'Institut Fourier, Tome 38 (1988) no. 3, pp. 219-244.

Il a été prouvé que toutes les variétés feuilletées compactes de classe C2, de codimension 1, dont toutes les feuilles sont propres, sont de classe C. Plus précisément, une telle variété feuilletée est homéomorphe à une variété de classe C. En d’autres termes, le résultat n’est pas vrai pour un feuilletage à feuilles non-propres. Dans ce cas précis, il y a une différence du point de vue topologique entre les classes Cr et Cr+1, pour tout entier naturel r.

Compact, C2-foliated manifolds of codimension one, having all leaves proper, are shown to be C-smoothable. More precisely, such a foliated manifold is homeomorphic to one of class C. The corresponding statement is false for foliations with nonproper leaves. In that case, there are topological distinctions between smoothness of class Cr and of class Cr+1 for every nonnegative integer r.

@article{AIF_1988__38_3_219_0,
     author = {Cantwell, John and Conlon, Lawrence},
     title = {Smoothability of proper foliations},
     journal = {Annales de l'Institut Fourier},
     pages = {219--244},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {38},
     number = {3},
     year = {1988},
     doi = {10.5802/aif.1146},
     mrnumber = {90f:57034},
     zbl = {0644.57013},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1146/}
}
TY  - JOUR
AU  - Cantwell, John
AU  - Conlon, Lawrence
TI  - Smoothability of proper foliations
JO  - Annales de l'Institut Fourier
PY  - 1988
SP  - 219
EP  - 244
VL  - 38
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://www.numdam.org/articles/10.5802/aif.1146/
DO  - 10.5802/aif.1146
LA  - en
ID  - AIF_1988__38_3_219_0
ER  - 
%0 Journal Article
%A Cantwell, John
%A Conlon, Lawrence
%T Smoothability of proper foliations
%J Annales de l'Institut Fourier
%D 1988
%P 219-244
%V 38
%N 3
%I Institut Fourier
%C Grenoble
%U https://www.numdam.org/articles/10.5802/aif.1146/
%R 10.5802/aif.1146
%G en
%F AIF_1988__38_3_219_0
Cantwell, John; Conlon, Lawrence. Smoothability of proper foliations. Annales de l'Institut Fourier, Tome 38 (1988) no. 3, pp. 219-244. doi : 10.5802/aif.1146. https://www.numdam.org/articles/10.5802/aif.1146/

[C.C1] J. Cantwell and L. Conlon, Leaf prescriptions for closed 3-manifolds, Trans. Amer. Math. Soc., 236 (1978), 239-261. | MR | Zbl

[C.C2] J. Cantwell and L. Conlon, Poincaré-Bendixson theory for leaves of codimension one, Trans. Amer. Math. Soc., 265 (1981), 181-209. | MR | Zbl

[C.C3] J. Cantwell and L. Conlon, Nonexponential leaves at finite level, Trans. Amer. Math. Soc., 269 (1982), 637-661. | MR | Zbl

[C.C4] J. Cantwell and L. Conlon, Smoothing fractional growth, Tôhoku Math. J., 33 (1981), 249-262. | MR | Zbl

[De] A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., 11 (1932), 333-375. | JFM | Numdam

[Di] P. Dippolito, Codimension one foliations of closed manifolds, Ann. of Math., 107 (1978), 403-453. | MR | Zbl

[E.M.S.] R. Edwards, K. Millett and D. Sullivan, Foliations with all leaves compact, Topology, 16 (1977), 13-32. | MR | Zbl

[E] D.B.A. Epstein, Periodic flows on 3-manifolds, Ann. of Math., 95 (1972), 68-92. | MR | Zbl

[F] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton Univ. Press, Princeton, N.J., 1981. | MR | Zbl

[G] C. Godbillon, Feuilletages, Études Géométriques II, Publ. Inst. de Recherche Math. Avancée, Univ. Louis Pasteur, Strasbourg, 1986. | Zbl

[Hae] A. Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, 16 (1962), 367-397. | Numdam | MR | Zbl

[Har1] J. Harrison, Unsmoothable diffeomorphisms, Ann. of Math., 102 (1975), 83-94. | MR | Zbl

[Har2] J. Harrison, Unsmoothable diffeomorphisms on higher dimensional manifolds, Proc. Amer. Math. Soc., 73 (1979), 249-255. | MR | Zbl

[H.H] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Part B, Vieweg, Braunschweig, 1983. | Zbl

[I] T. Inaba, On stability of proper leaves of codiménsion one foliations, J. Math. Soc. Japan, 29 (1977), 771-778. | MR | Zbl

[M] K. Millett, Generic properties of proper foliations, I.H.E.S. preprint (1984).

[P] J.F. Plante, Foliations with measure preserving holonomy, Ann. of Math., 102 (1975), 327-361. | MR | Zbl

[S.S.] R. Sacksteder and A.J. Schwartz, Limit sets of foliations, Ann. Inst. Fourier, 15-2 (1965), 201-214. | Numdam | MR | Zbl

[T] T. Tsuboi, Examples of non-smoothable actions on the interval, Preprint (1986). | Zbl

[W] J. Wood, Foliations on 3-manifolds, Ann. of Math., 89 (1969), 336-358. | MR | Zbl

Cité par Sources :