We give sufficient conditions for the conjugacy of two diffeomorphisms coinciding on a common invariant submanifold V and with equal normal derivative; moreover we obtain that the homeomorphism h realizing this conjugacy satisfies additional inequalities. These inequalities, implying also the existence of the normal derivative of h along V, serve to extend this conjugacy towards regions where moduli of stability are present.
On donne des conditions suffisantes pour que deux difféomorphismes, qui sont égaux sur une même variété invariante et dont les dérivées dans la direction normale sont aussi égales, soit conjugués ; on obtient en plus que l’homéomorphisme conjuguant satisfait des inégalités supplémentaires. Ces inégalités, qui impliquent l’existence de la dérivée normale de le long de , servent à étendre cette conjugaison dans des régions où il y a des modules de stabilité.
@article{AIF_1990__40_1_213_0, author = {Bonckaert, Patrick}, title = {Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability}, journal = {Annales de l'Institut Fourier}, pages = {213--236}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {40}, number = {1}, year = {1990}, doi = {10.5802/aif.1211}, mrnumber = {91e:58086}, zbl = {0681.58022}, language = {en}, url = {http://archive.numdam.org/articles/10.5802/aif.1211/} }
TY - JOUR AU - Bonckaert, Patrick TI - Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability JO - Annales de l'Institut Fourier PY - 1990 SP - 213 EP - 236 VL - 40 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://archive.numdam.org/articles/10.5802/aif.1211/ DO - 10.5802/aif.1211 LA - en ID - AIF_1990__40_1_213_0 ER -
%0 Journal Article %A Bonckaert, Patrick %T Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability %J Annales de l'Institut Fourier %D 1990 %P 213-236 %V 40 %N 1 %I Institut Fourier %C Grenoble %U http://archive.numdam.org/articles/10.5802/aif.1211/ %R 10.5802/aif.1211 %G en %F AIF_1990__40_1_213_0
Bonckaert, Patrick. Conjugacy of normally tangent diffeomorphisms : a tool for treating moduli of stability. Annales de l'Institut Fourier, Volume 40 (1990) no. 1, pp. 213-236. doi : 10.5802/aif.1211. http://archive.numdam.org/articles/10.5802/aif.1211/
[1] Le Spectre d'une Variété Riemannienne, Lecture Notes in Mathematics 194, Springer-Verlag, Berlin-Heidelberg-New York (1971). | MR | Zbl
, and ,[2] Singularities of Vector fields on R3 determined by their first nonvanishing jet, Ergodic Theory and Dynamical Systems, 9 (1989) 281-308. | Zbl
, and ,[3] Differentialgeometrie, Viewig, Braunschweig, 1981. | MR | Zbl
,[4] Differential Topology, Springer, New York, 1976. | MR | Zbl
,[5] Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin-Heidelberg-New York, 1977. | MR | Zbl
, and ,[6] General Topology, Van Nostrand, New York, 1955. | MR | Zbl
,[7] Morse-Smale vector fields on 4-manifolds with boundary, Dynamical Systems and bifurcation theory, Pitman series 160, Longman, 1987. | MR | Zbl
and ,[8] Differential Manifolds, Addison-Wesley, Reading Massachusetts, 1972. | MR | Zbl
,[9] Moduli of Stability of two-dimensional diffeomorphisms, Topology 19 (1980), 9-21. | MR | Zbl
,[10] A type of moduli for saddle connections of planar diffeomorphisms, J. of Diff. Eq. 75 (1988), 88-102. | MR | Zbl
and ,[11] A differentiable invariant of topological conjugacies and moduli of stability, Astérisque, 51 (1978), 335-346. | Numdam | MR | Zbl
,[12] Differential Geometry, Volume I, Publish or Peris Inc., Berkeley, 1979.
,[13] Normal hyperbolicity and linearisability, Invent. Math., 87 (1987), 377-384. | MR | Zbl
,[14] Linearisation along invariant manifolds and determination of degenerate singularies of vector fields in R3, Delft Progr. Rep., 12 (1988), 107-124. | MR | Zbl
,[15] Smooth linearization of hyperbolic fixed points without resonace conditions, preprint. | Zbl
,[16] Moduli of stability for germs of homogeneous vector fields on R3, J. of Diff. Eq., 69 (1987), 63-84. | Zbl
and ,Cited by Sources: