We describe four tables of primitive sextic fields (one for each signature). The tables provide for each field, the discriminant, the Galois group of the Galois closure and a polynomial which defines the sextic field.
Nous décrivons quatre tables de corps sextiques primitifs (une par signature). Les tables fournissent pour chaque corps, le discriminant, le groupe de Galois de la clôture galoisienne et un polynôme définissant le corps.
@article{AIF_1990__40_4_757_0, author = {Olivier, Michel}, title = {Corps sextiques primitifs}, journal = {Annales de l'Institut Fourier}, pages = {757--767}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {40}, number = {4}, year = {1990}, doi = {10.5802/aif.1233}, mrnumber = {92a:11123}, zbl = {0734.11054}, language = {fr}, url = {http://archive.numdam.org/articles/10.5802/aif.1233/} }
Olivier, Michel. Corps sextiques primitifs. Annales de l'Institut Fourier, Volume 40 (1990) no. 4, pp. 757-767. doi : 10.5802/aif.1233. http://archive.numdam.org/articles/10.5802/aif.1233/
[1] The computation of sextic fields with a quadratic subfield, Math. Comp., 54 (1990), 869-884. | MR | Zbl
, et ,[2] Modular Functions of One Variable IV, dit "Anvers IV", Lectures Notes 476 (1975), Springer-Verlag, Heidelberg. | Zbl
et , éd.,[3] Exercices diédraux et courbes à multiplications réelles, Actes du Séminaire de théorie des nombres de Paris (1989/1990), Birkhäuser, Boston, à paraître.
,[4] The transitive groups of degree up to eleven, Comm. Alg., 11 (1983), 863-911. | MR | Zbl
and ,[5] Discriminant minimal et petits discriminants des corps de nombres de degré 7 avec 5 places réelles, J. London Math. Soc., 38 (1988), 33-46. | MR | Zbl
,[6] Méthodes géométriques dans la recherche des petits discriminants, Progress in Mathematics, 59 (1985), 147-179, Birkhäuser. | MR | Zbl
,[7] The computation of sextic fields with a cubic subfield and no quadratic subfield, Math. Comp. (à paraître). | Zbl
,[8] On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields, J. Number Theory, 14 (1982), 99-117. | MR | Zbl
,[9] The determination of Galois groups, Math. Comp., 27 (1973), 981-996. | MR | Zbl
,Cited by Sources: