Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences
Annales de l'Institut Fourier, Tome 41 (1991) no. 3, pp. 665-678.

Nous considérons les permutations de N qui conservent la μ-répartition des suites ou la densité des parties de N ou la somme de Cesàro des suites sommables, et montrons que le groupe (resp. semi-groupe) de ces permutations sont les mêmes. Il est prouvé qu’il y a des fonctionnelles de l (N) qui sont invariantes sous l’action du groupe de Lévy et que toutes ces fonctionnelles sont des extensions de la somme de Cesàro.

We are interested in permutations preserving certain distribution properties of sequences. In particular we consider μ-uniformly distributed sequences on a compact metric space X, 0-1 sequences with densities, and Cesàro summable bounded sequences. It is shown that the maximal subgroups, respectively subsemigroups, of Aut(N) leaving any of the above spaces invariant coincide. A subgroup of these permutation groups, which can be determined explicitly, is the Lévy group 𝒢. We show that 𝒢 is big in the sense that the Cesàro mean is characterized by its invariance under the Lévy group. As a result, any 𝒢 -invariant positive normalized linear functional on l (N) is an extension of Cesàro means. Finally we prove that there exist 𝒢 -invariant extensions of Cesàro mean to all of l (N).

@article{AIF_1991__41_3_665_0,
     author = {Bl\"umlinger, M. and Obata, N.},
     title = {Permutations preserving Ces\`aro mean, densities of natural numbers and uniform distribution of sequences},
     journal = {Annales de l'Institut Fourier},
     pages = {665--678},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {41},
     number = {3},
     year = {1991},
     doi = {10.5802/aif.1269},
     zbl = {0735.11004},
     mrnumber = {92j:43002},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1269/}
}
Blümlinger, M.; Obata, N. Permutations preserving Cesàro mean, densities of natural numbers and uniform distribution of sequences. Annales de l'Institut Fourier, Tome 41 (1991) no. 3, pp. 665-678. doi : 10.5802/aif.1269. http://archive.numdam.org/articles/10.5802/aif.1269/

[C] J. Coquet, Permutations des entiers et répartition des suites, Publ. Math. Orsay (Univ. Paris XI, Orsay), 86-1 (1986), 25-39. | MR 87h:11011 | Zbl 0581.10026

[K] V.L. Klee, Jr., Invariant extensions of linear functionals, Pacific J. Math., 14 (1954), 37-46. | MR 15,631b | Zbl 0055.10001

[KN] L. Kuipers, H. Niederreiter, Uniform distribution of sequences Wiley, New York, 1974. | MR 54 #7415 | Zbl 0281.10001

[L] P. Lévy, Problèms Concretes d'Analyse Fonctionelle, Gauthier-Villars, Paris, 1951. | Zbl 0043.32302

[O1] N. Obata, A note on certain permutation groups in the infinite dimensional rotation groups, Nagoya Math. J., 109 (1988), 91-107. | MR 89c:11020 | Zbl 0611.60013

[O2] N. Obata, Density of natural numbers and the Lévy group J. Number Theory, 30 (1988), 288-297. | MR 90e:11027 | Zbl 0658.10065

[P] A. Paterson, Amenability, A.M.S., Providence, 1988. | MR 90e:43001 | Zbl 0648.43001

[R] H. Rindler, Eine Charakterisierung gleichverteilter Folgen, Arch. Math., 32 (1979), 185-188. | MR 80i:10067 | Zbl 0409.10036

[S] Q. Stout, On Levi's duality between permutations and convergent series J. London Math. Soc., (2) 34 (1986), 67-80. | MR 88f:40002 | Zbl 0633.40004