Genus 2 Heegaard decompositions of small Seifert manifolds
Annales de l'Institut Fourier, Volume 41 (1991) no. 4, pp. 1005-1024.

The genus 2 Heegaard splittings and decompositions of Seifert manifolds over S with 3 exeptional fibres are classified with respect to isotopies and homeomorphisms. In general there are 3 different isotopy classes of Heegaard splittings and 6 different isotopy classes of Heegaard decompositions. Moreover, we determine when a homeomorphism class is not an isotopy class.

Les scindements et décompositions de Heegaard de genre 2 des variétés de Seifert de base S ayant 3 fibres exceptionnelles sont classifiés à isotopie et homéomorphisme près. En général il y a 3 classes d’isotopie distinctes de scindements de Heegaard et 6 classes d’isotopie distinctes de décompositions de Heegaard. De plus on détermine précisément les classes d’homéomorphie qui ne sont pas des classes d’isotopie.

@article{AIF_1991__41_4_1005_0,
     author = {Boileau, Michel and Collins, D. J. and Zieschang, H.},
     title = {Genus 2 {Heegaard} decompositions of small {Seifert} manifolds},
     journal = {Annales de l'Institut Fourier},
     pages = {1005--1024},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {41},
     number = {4},
     year = {1991},
     doi = {10.5802/aif.1282},
     mrnumber = {93d:57026},
     zbl = {0734.57003},
     language = {en},
     url = {http://archive.numdam.org/articles/10.5802/aif.1282/}
}
TY  - JOUR
AU  - Boileau, Michel
AU  - Collins, D. J.
AU  - Zieschang, H.
TI  - Genus 2 Heegaard decompositions of small Seifert manifolds
JO  - Annales de l'Institut Fourier
PY  - 1991
SP  - 1005
EP  - 1024
VL  - 41
IS  - 4
PB  - Institut Fourier
PP  - Grenoble
UR  - http://archive.numdam.org/articles/10.5802/aif.1282/
DO  - 10.5802/aif.1282
LA  - en
ID  - AIF_1991__41_4_1005_0
ER  - 
%0 Journal Article
%A Boileau, Michel
%A Collins, D. J.
%A Zieschang, H.
%T Genus 2 Heegaard decompositions of small Seifert manifolds
%J Annales de l'Institut Fourier
%D 1991
%P 1005-1024
%V 41
%N 4
%I Institut Fourier
%C Grenoble
%U http://archive.numdam.org/articles/10.5802/aif.1282/
%R 10.5802/aif.1282
%G en
%F AIF_1991__41_4_1005_0
Boileau, Michel; Collins, D. J.; Zieschang, H. Genus 2 Heegaard decompositions of small Seifert manifolds. Annales de l'Institut Fourier, Volume 41 (1991) no. 4, pp. 1005-1024. doi : 10.5802/aif.1282. http://archive.numdam.org/articles/10.5802/aif.1282/

[1] J. S. Birman, F. Gonzáles-Acuña, J. M. Montesinos, Heegaard splittings of prime 3-manifolds are not unique, Mich. Math., J., 23 (1976), 97-103. | Zbl

[2] M. Boileau, D. J. Collins, H. Zieschang, Scindements de Heegaard des petites variétés de Seifert, C.R. Acad. Sci. Paris, 305-I (1987), 557-560. | MR | Zbl

[3] M. Boileau, J.-P. Otal, Groupes des difféotopies de certaines variétés de Seifert. C.R. Acad. Sci., Paris, 303-I (1986), 19-22. | MR | Zbl

Groupes d'homéotopies et scindements de Heegaard des petites variétés de Seifert, Invent. Math., 106 (1991), 85-107. | Zbl

[4] M. Boileau, J.-P. Otal, Sur les scindements de Heegaard du tore T3, J. Diff. Geom., 32 (1990), 209-233. | MR | Zbl

[5] M. Boileau, M. Rost, H. Zieschang, On Heegaard decompositions of torus knot exteriors' and related Seifert fibre spaces, Math. Ann., 279 (1988), 553-581. | MR | Zbl

[6] M. Boileau, H. Zieschang, Heegaard genus of closed orientable Seifert 3-manifolds, Invent. Math., 76 (1984), 455-468. | MR | Zbl

[7] F. Bonahon, Difféotopies des espaces lenticulaires, Topology, 22 (1983), 305-314. | MR | Zbl

[8] F. Bonahon, J.-P. Otal, Scindements de Heegaard des espaces lenticulaires, Ann. Scient. Éc. Norm. Sup., 16 (1983), 451-466. | Numdam | MR | Zbl

[9] M. Lustig, Nielsen equivalence and simple homotopy type, Proc. London Math. Soc. (to appear). | Zbl

[10] M. Lustig, Y. Moriah, Nielsen equivalence in Fuchsian groups and Seifert fibre spaces, Topology (to appear). | Zbl

[11] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Berlin-Heidelberg, New York, Springer, 1977. | MR | Zbl

[12] Y. Moriah, Heegaard splittings and group presentations, Thesis, University of Texas, Austin, 1986.

[13] Y. Moriah, Heegaard splittings of Seifert fibered spaces, Invent. Math., 91 (1988), 465-481. | MR | Zbl

[14] J. Nielsen, Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann., 78 (1918), 385-397. | JFM

[15] P. Orlik, E. Vogt, H. Zieschang, Zur Topologie gefaserter dreidimensionaler Mannigfaltigkeiten, Topology, 6 (1967), 49-64. | MR | Zbl

[16] G. Rosenberger, All generating pairs of all two generator Fuchsian groups, Arch. Math., 46 (1986), 198-204. | MR | Zbl

[17] H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math., 60 (1933), 147-238. | JFM | Zbl

[18] F. Waldhausen, Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I, Invent. Math., 3 (1967), 308-333 ; II, Invent. Math., 4 (1967), 87-117. | MR | Zbl

[19] F. Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology, 7 (1968), 195-203. | MR | Zbl

[20] H. Zieschang, B. Zimmermann, Über Erweiterungen von Z und Z * Z durch nichteuklidische kristallographische Gruppen, Math. Ann., 259 (1982), 29-51. | MR | Zbl

Cited by Sources: